Skip to main content

Advertisement

Log in

Factors driving plant rarity in dry grasslands on different spatial scales: a functional trait approach

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In European dry grasslands land-use changes affect plant species performance and frequency. Potential driving forces are eutrophication and habitat fragmentation. The importance of these factors is presumably scale dependent. We used a functional trait approach to detect processes that influence species frequency and endangerment on different spatial scales. We tested for associations between functional traits and (1) frequency and (2) degree of endangerment on local, regional and national scales. We focussed on five selected traits that describe the life-history of plant species and that are related to competition, dispersal ability and habitat specificity. Trait data on plant height, SLA, plant coverage, peak of flowering and diaspore mass were measured for 28 perennials from common to rare and endangered to non-endangered on 59 dry grassland sites in north-eastern Germany. Multiple regression models revealed that species frequency is positively and species endangerment negatively related to plant height, plant coverage and SLA on more than one spatial scale. On the local scale, diaspore mass has a negative effect on species frequency. More frequent and less endangered species show a later peak of flowering on nationwide and regional scales. We concluded that competition traits are more important on larger scales, whereas dispersal traits are more important for species frequency on the smaller scale. On national and regional scales, eutrophication and habitat loss may be the main drivers of species threat, whereas on the local scale fragmentation plays a crucial role for the performance of dry grassland species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Benkert D, Fukarek F, Korsch H (1996) Verbreitungsatlas der Farn-und Blütenpflanzen Ostdeutschlands. Fischer, Jena

    Google Scholar 

  • Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541

    Article  Google Scholar 

  • Bühler C, Schmid B (2001) The influence of management regime and altitude on the population structure of Succisa pratensis: implications for vegetation monitoring. J Appl Ecol 38:689–698

    Article  Google Scholar 

  • Carls R (2001) Physisch-geographische Untersuchungen am westlichen Oderbruchrand und deren Aussagemöglichkeiten für die Genese des Oderbruches. Zeitschrift für geologische Wissenschaften Berlin 29:193–201

    Google Scholar 

  • Christensen RHB (2011) Ordinal regression models for ordinal data. http://www.cran.r-project.org/package=ordinal/. Accessed 20 Oct 2012

  • Colling G, Matthies D (2006) Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis). J Ecol 94:959–972

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van der Heijden MGA, Pausas JG, Poorter H (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Crawley M (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett. doi:10.1111/j.1461-0248.2012.01844.x

    PubMed  Google Scholar 

  • Dengler J (1994) Flora und Vegetation von Trockenrasen und verwandten Gesellschaften im Biosphärenreservat Schorfheide-Chorin. Gleditschia 22:179–321

    Google Scholar 

  • Dostalek J, Frantik T (2008) Dry grassland plant diversity conservation using low-intensity sheep and goat grazing management: case study in Prague (Czech Republic). Biodiv Conserv 17:1439–1454

    Article  Google Scholar 

  • Drobnik J, Römermann C, Bernhardt-Römermann M, Poschlod P (2011) Adaptation of plant functional group composition to management changes in calcareous grassland. Agric Ecosyst Environ 145:29–37

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobotanica 18:1–262

    Google Scholar 

  • Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364

    Article  Google Scholar 

  • Eriksson O, Jakobsson A (1999) Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evol Ecol 13:411–423

    Article  Google Scholar 

  • Farnsworth EJ (2007) Plant life history traits of rare versus frequent plant taxa of sandplains. Implications for research and management trials. Biol Conserv 136:44–52

    Article  Google Scholar 

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho AF, Guegan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a metaanalysis. J Biogeo 36:132–147

    Article  Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737

    Article  Google Scholar 

  • Fischer LK, von der Lippe M, Kowarik I (in press) Urban grassland restoration: which plant traits make desired species successful colonizers? Appl Veg Sci. doi:10.1111/j.1654-109X.2012.01216.x

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956

    Article  Google Scholar 

  • IUCN (2001) IUCN Red List Categories and Criteria: Version 3.1. IUCN. Species Survival Commission. Gland, Switzerland and Cambridge

  • Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32

    Article  Google Scholar 

  • Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin Iii FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernandez-Ménez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusiá J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordonez J, Overbeck G, Ozinga WA, Patino S, Paula S, Pausas JG, Penuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011) TRY—a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenendal JM, Klimes L, Klimesova J, Klotz S, Rusch G, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga W, Römermann C, Stadler M, Schlegelmilch J, Steendam H, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA traitbase: a database of plant life-history traits of North West Europe. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Knapp S, Kühn I, Bakker JP, Kleyer M, Klotz S, Ozinga WA, Poschlod P, Thompson K, Thuiller W, Römermann C (2009) How species traits and affinity to urban land use control large-scale species frequency. Divers Distrib 15:533–546

    Article  Google Scholar 

  • Korneck D, Sukopp H (1988) Rote Liste der in der Bundesrepublik Deutschland ausgestorbenen, verschollenen und gefährdeten Farn-und Blütenpflanzen und ihre Auswertung für den Arten und Biotopschutz. Schriftenreihe für Vegetationskunde 19:1–210

    Google Scholar 

  • Körner K, Jeltsch F (2008) Detecting general plant functional type responses in fragmented landscapes using spatially-explicit simulations. Ecol Model 3:287–300

    Article  Google Scholar 

  • Krausch H-D (1961) Die kontinentalen Steppenrasen (Festucetalia valesiacae) in Brandenburg. Feddes Repertorium Beiheft 139:167–227

    Google Scholar 

  • Krauss J, Klein A-M, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiv Conserv 13:1427–1439

    Article  Google Scholar 

  • Kunin WE, Shmida A (1997) Plant reproductive traits as a function of local, regional, and global abundance. Conserv Biol 11:183–192

    Article  Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2011) Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). Plant Biol 13:667–777

    Article  PubMed  CAS  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits—revisiting the Holy Grail. Functional Ecol 16:545–556

    Article  Google Scholar 

  • Lehsten V (2002) Lafore–Leaf area for everyone. http://www.uni-oldenburg.de/landeco/Download/Software/Laforem/Lafore.html. Accessed 15 Jun 2008

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Maurer K, Durka W, Stöcklin J (2003) Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic Appl Ecol 4:307–316

    Article  Google Scholar 

  • McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic, New York, pp 105–142

    Google Scholar 

  • Moles AT, Westoby M (2004) Seedling survival and seed size: a synthesis of the literature. J Ecol 92:372–383

    Article  Google Scholar 

  • Mouillot D, Mason NWH, Wilson JB (2007) Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152:729–737

    Article  PubMed  Google Scholar 

  • Münzbergova Z (2005) Determinants of species rarity: population growth rates of species sharing the same habitat. Am J Bot 92:1987–1994

    Article  PubMed  Google Scholar 

  • Murray BR, Thrall PH, Malcom Gill A, Nicotra AB (2002) How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Aust Ecol 27:291–310

    Article  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    Article  PubMed  Google Scholar 

  • Olesen JM, Jain SK (1994) Fragmented plant populations and their lost interactions. In: Loeschke V, Tomiuk J, Jain SK (eds) Conservation genetics. Birkhäuser, Basel, pp 417–426

    Chapter  Google Scholar 

  • Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Potschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  • Pilgrim ES, Crawley MJ, Dolphin K (2004) Patterns of rarity in the native British flora. Biol Conserv 120:161–170

    Article  Google Scholar 

  • Pless H (1994) Pflanzensoziologische Untersuchungen der Trockenrasen an den Hängen des Odertales im Kreis Seelow (Brandenburg). University of Göttingen, Göttingen

    Google Scholar 

  • Primack RB, Miao SL (1992) Dispersal can limit local plant distribution. Conserv Biol 6:513–519

    Article  Google Scholar 

  • Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783

    Article  PubMed  Google Scholar 

  • Rabinowitz D (1981) Seven forms of rarity. In: Synge H, Chichester J (eds) The biological aspects of rare plant conservation. Wiley, New York, pp 205–217

    Google Scholar 

  • Rees M (1995) Community structure in sand dune annuals. Is seed weight a key quantity? J Ecol 83:857–863

    Article  Google Scholar 

  • Reitalu T, Purschke O, Johansson LJ, Hall K, Sykes MT, Prentice HC (2012) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialisation. J Veg Sci 23:41–51

    Article  Google Scholar 

  • Ristow M, Herrmann A, Illig H, Klemm G, Kummer V, Kläge HC, Machatzi B, Rätzel S, Schwarz R, Zimmermann F (2006) Liste und Rote Liste der etablierten Gefäßpflanzen Brandenburgs. Naturschutz und Landschaftspflege in Brandenburg 15(4), Beiheft

  • Ristow M, Rohner MS, Heinken T (2011) Exkursion 4: die Oderhänge bei Mallnow und Lebus. Tuexenia Beiheft 4:127–144

    Google Scholar 

  • Römermann C, Tackenberg O, Poschlod P (2005) How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos 110:219–230

    Article  Google Scholar 

  • Römermann C, Tackenberg O, Scheuerer M, May R, Poschlod P (2007) Predicting habitat distribution and frequency from plant species co-occurrence data. J Biogeo 34:1041–1052

    Article  Google Scholar 

  • Römermann C, Tackenberg O, Jackel AK, Poschlod P (2008) Eutrophication and fragmentation are related to species’ rate of decline but not to species rarity: results from a functional approach. Biodiv Conserv 17:591–604

    Article  Google Scholar 

  • Römermann C, Bernhardt-Römermann M, Kleyer M, Poschlod P (2009) Substitutes for grazing in semi-natural grasslands- do mowing or mulching represent valuable alternatives to maintain vegetation structure? J Veg Sci 20:1086–1098

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 1 July 2011

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeo 12:1–20

    Article  Google Scholar 

  • Smart SM, Bunce RGH, Marrs R, LeDuc M, Firbank LG, Maskell LC, Scott WA, Thompson K, Walker KJ (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: tests of hypothesised changes in trait representation. Biol Conserv 124:355–371

    Article  Google Scholar 

  • Thomas CD, Abery JCG (1995) Estimating rates of butterfly decline from distribution maps: the effect of scale. Biol Conserv 73:59–65

    Article  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167:915–919

    Article  Google Scholar 

  • Tremlova K, Münzbergova Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:965–977

    Article  PubMed  Google Scholar 

  • Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the flora of lowland England, UK. Biodiv Conserv 15:1913–1942

    Article  Google Scholar 

  • Wallis deVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273

    Article  Google Scholar 

  • Weiher E, Howe A (2003) Scale-dependence of environmental effects on species richness in oak savannas. J Veg Sci 14:917–920

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT et al (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot H, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Frank Schurr (University of Montpellier) and Katja Schiffers (Université Grenoble) for constructive comments on statistics. We would also like to thank Linda Feichtinger, Tina Fritsche, Christine Kurz and Hans Pfestorf for field assistance and Johanna Reinhard for comments on the manuscript. We thank the Brandenburg local nature conservation authorities for providing collecting permissions in protected natural reserve areas. Without the big number of voluntary botanists who provided plant frequency data for the regional and national scale the work in this design would have not been possible. The research of CR was kindly supported by the DFG project RO 3842/1-1 (The relative effects of abiotic and biotic parameters on species distributions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lauterbach.

Appendix

Appendix

See Table 5.

Table 5 Investigated dry-grassland species, habitat specificity according to Korneck and Sukopp (1988), species frequency and degree of endangerment on different spatial scales (see Materials and Methods in detail)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauterbach, D., Römermann, C., Jeltsch, F. et al. Factors driving plant rarity in dry grasslands on different spatial scales: a functional trait approach. Biodivers Conserv 22, 2337–2352 (2013). https://doi.org/10.1007/s10531-013-0455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0455-y

Keywords

Navigation