Skip to main content

Advertisement

Log in

Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Butterflies are strongly declining on grassland habitats of Central Europe. Therefore, the success of conservation measures on high quality grassland habitats is controversially discussed. We compared the changes in butterfly diversity and community structure on six managed calcareous grasslands with eight unmanaged vineyard fallows. We obtained strong losses of species diversity and remarkable shifts of community compositions on both habitat types. However, the changes on vineyard fallows were only slightly more severe but more stochastic than on the calcareous grasslands. The shifts in community composition with respect to functional species traits were rather similar between the two different grassland types so that complex butterfly communities evolved into generalist-dominated ones. Connectivity was higher among vineyard fallows than among calcareous grasslands. Consequently, conservation measures on calcareous grasslands only partly achieved their goal to maintain the high species diversity and functional complexity still observed in the 1970s. The negative impacts of eutrophication and monotonisation of the landscape as well as climate change are affecting all habitats, independently from management concepts. Therefore, management on conservation sites can buffer against these effects, but is not sufficient for a full compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams M (2000) The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21:847–859

    Article  Google Scholar 

  • Arai K, Tonooka H (2005) Radiometric performance evaluation of ASTER VNIR, SWIR and TIR. IEEE Trans Geosci Remote Sens 43:2725–2732

    Article  Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866

    Article  Google Scholar 

  • Balmer E, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterflies: rethinking conservation practices. Conserv Biol 14:746–757

    Article  Google Scholar 

  • Bartholmess H, Schlottmann K, Nobel W (2011) Immission measurements with diffusive samplers and lichen mappings to show the impact of nitrogen in the environment and its effects. Gefahrstoffe Reinhalt Luft 71:165–172

    CAS  Google Scholar 

  • Benes J, Kuras T (1998) Long term diversity changes of butterflies and burnets of the Opavska pahorkatina hills and Nizky Jesenik Mts. (Czech Republic). Casopis Slezskeho Muzea Opava 47:245–270

    Google Scholar 

  • Bielefeld U (1985) Aufbau eines vernetzten Biotopsystems, Trocken- und Halbtrockenrasen. In: Rheinland-Pfalz, Ministerium für Soziales, Gesundheit, Umwelt (eds) Arten- und Biotopschutz—Aufbau eines vernetzten Biotopsystems. Ergebnis der Fachtagung 1984. Verlag Sommer, Lahnstein

    Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt & Co., Uitgevers en Importeurs

    Google Scholar 

  • Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292

    Article  Google Scholar 

  • Burggraaff P, Kleefeld KD (1998) Historische Kulturlandschaft und Kulturlandschaftselemente: Ergebnisse aus dem F+E-Vorhaben 808 09 075 des Bundesamtes für Naturschutz. BfN-Schr.-Vertrieb im Landwirtschaftsverl, Münster

    Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27

    Article  Google Scholar 

  • Ebert G, Rennwald E (eds) (1991) Die Schmetterlinge Baden-Württembergs, Band 1 und 2. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Gaedicke R, Heinicke W (1999) Verzeichnis der Schmetterlinge Deutschlands (Entomofauna Germanica 3). Entomologische Nachrichten und Berichte (Dresden) 5:1–216

    Google Scholar 

  • Gao BC (1995) Normalized difference water index for remote sensing of vegetation liquid water from space. Proc SPIE 2480:225–236

    Article  Google Scholar 

  • Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hill J, Mehl W (2003) Geo- und radiometrische Aufbereitung multi- und hyperspektraler Daten zur Erzeugung langjähriger kalibrierter Zeitreihen. Photogramm Fernerkun 2003:7–14

    Google Scholar 

  • Hill J, Sturm B (1991) Radiometric correction of multi-temporal Thematic Mapper data for the use in agricultural land-cover classification and vegetation monitoring. Int J Remote Sens 12:1471–1491

    Article  Google Scholar 

  • Hill J, Diemer C, Stöver O, Udelhoven T (1999) A local correlation approach for the fusion of remote sensing data with different spatial resolutions in forestry applications. International Archives of Photogrammetry and Remote Sensing, Valladolid

    Google Scholar 

  • Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Glob Change Biol 17:2987–2990

    Article  Google Scholar 

  • Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics, section 5.3. World Scientific Press, Singapore

    Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment: an earth resource perspective, 2nd edn. Prentice-Hall, Upper Saddle River, p 592

    Google Scholar 

  • Jiménez-Valverde A (2011) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecol Biogeogr 21:498–507

    Article  Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasseled Cap—A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. Proceedings of the 2nd annual symposium on machine processing of remotely sensed data, pp 4B41–4B49

  • Klein HP, Schumacher B, Schumacher W (2001) Biodiversität und Naturschutz im Biologieunterricht. Praxis der Naturwissenschaften-Biologie in der Schule 4:1–6

    Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson R (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lizée MH, Bonardo R, Mauffrey JF, Bertaudière-Montes V, Tatoni T, Deschamps-Cottin M (2011) Relative importance of habitat and landscape scales on butterfly communities of urbanizing areas. C R Biol 334:74–84

    Article  PubMed  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Maes D, Van Dyck H (2001) Butterfly diversity loss in flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many loosers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  PubMed  CAS  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82:591–605

    Article  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. The British monitoring scheme. Chapman & Hall, London

    Google Scholar 

  • Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16:3423–3436

    Article  Google Scholar 

  • Power DM (1972) Number of bird species on the California islands. Evolution 26:451–463

    Article  Google Scholar 

  • R development core team (2010) R: a language and environment for statistical computing. http://www.R-project.org. Accessed May 2012

  • Rákosy L, Schmitt T (2011) Are butterflies and moths suitable ecological indicator systems for restoration measures of semi-natural calcareous grassland habitats? Ecol Indic 11:1040–1045

    Article  Google Scholar 

  • Reinhardt R, Thust R (1988) Zur ökologische Klassifizierung und zum Gefährdungsgrad der Tagfalter der DDR. Entomologische Nachrichten und Berichte 32:199–206

    Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium, NASA SP-351 I:309–317

  • Schmidt A (2010) Die Großschmetterlinge (Macrolepidoptera s. l.) des Landes Rheinland-Pfalz. Standard-Faunenliste mit integriertem Rote-Liste-Vorschlag. Melanargia 22:121–277

    Google Scholar 

  • Schmitt T, Rákosy L (2007) Changes of traditional agrarian landscape and their conservation implications: a case study of butterflies in Romania. Divers Distrib 13:855–862

    Article  Google Scholar 

  • Schmitt T, Augenstein B, Finger A (2008) The influence of changes in viticulture management on the butterfly (Lepidoptera) diversity in a wine growing region of southwestern Germany. Eur J Entomol 105:249–255

    Google Scholar 

  • Settele J, Feldmann R, Reinhardt R (1999) Die Tagfalter Deutschlands-Ein Handbuch für Freilandökologen. Umweltplaner und Naturschützer, Ulmer

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Tanré D, Deroo C, Duhaut P, Herman M, Morcrette JJ, Perbos J, Deschamps PY (1990) Description of a computer code to simulate the satellite signal in the solar spectrum the 5 S code. Int J Remote Sens 11:659–668

    Article  Google Scholar 

  • Thomas JA (1995) The conservation of declining butterfly populations in Britain and Europe: priorities, problems and successes. Biol J Linn Soc 56:55–72

    Article  Google Scholar 

  • Van Helsdingen PJ, Willemse L, Speight MCD (1996) Background information on invertebrates of the habitats directive and the bern convention; part 1: Crustacea, Coleoptera and Lepidoptera. Nature and Environment No. 79. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318

    Article  Google Scholar 

  • Van Swaay CAM, Warren MS (2006) Prime butterfly areas of Europe: an initial selection of priority sites for conservation. J Insect Conserv 10:5–11

    Article  Google Scholar 

  • Van Swaay CAM, Nowicki P, Settele J, van Strien AJ (2008) Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers Conserv 17:3455–3469

    Article  Google Scholar 

  • Van Swaay CAM, Maes D, Collins S, Munguira M, Šašić M, Settele J et al (2011) Applying IUCN criteria to invertebrates: how red is the Red List of European butterflies? Biol Conserv 144:470–478

    Article  Google Scholar 

  • Varga Z, Rákosy L (2007) Biodiversität der Karstgebiete im Karpatenbecken am Beispiel der Gross-Schmetterlingsfauna der Turzii-Schlucht bzw. des Aggteleker Karstgebietes. Entomol Rom 12:15–29

    Google Scholar 

  • WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273

    Article  Google Scholar 

  • Warren MS (1993a) A review of butterfly conservation in central southern Britain: I. Protection, evaluation and extinction on prime sites. Biol Conserv 64:25–35

    Article  Google Scholar 

  • Warren MS (1993b) A review of butterfly conservation in central southern Britain: II. Site management and habitat selection of key species. Biol Conserv 64:37–49

    Article  Google Scholar 

  • Warren (1997) Conserving Lepidoptera in a changing environment: a perspective from Western Europe. J Insect Conserv 1:i–iv

    Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  PubMed  CAS  Google Scholar 

  • Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750

    Article  Google Scholar 

  • Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Wulder MA (1998) Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog Phys Geogr 22:449–476

    Google Scholar 

  • Wynhoff I, Van Swaay CAM (1995) Threatened and vulnerable butterflies in the Netherlands. De Vlinderstichting, Wageningen

    Google Scholar 

  • Yamaguchi Y, Fujisada H, Kudoh M, Kawakami T, Tsu H, Kahle AB, Pniel M (1999) ASTER instrument characterization and operation scenario. Adv Space Res 23:1415–1424

    Article  Google Scholar 

  • Yamagushi Y, Kahle A, Tsu H, Kawakami T, Pniel M (1998) Overview of ASTER instrument on EOS-AM1 platform. IEEE Trans Geosci Remote Sens 36:1026–1071

    Google Scholar 

Download references

Acknowledgments

Permissions to work and collect butterflies in protected areas in Rhineland-Palatinate were granted by the Struktur- und Genehmigungsdirektion Nord (Koblenz, Germany). Financial support for KJF was provided by the Friedrich-Ebert-Foundation and the Ministry for Environment, Agriculture, Viticulture, Food and Forests Rhineland-Palatinate, and for JOE by the German Federal Environmental Foundation. We thank Michal Wiezik and two anonymous referees for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina J. Filz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filz, K.J., Engler, J.O., Stoffels, J. et al. Missing the target? A critical view on butterfly conservation efforts on calcareous grasslands in south-western Germany. Biodivers Conserv 22, 2223–2241 (2013). https://doi.org/10.1007/s10531-012-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0413-0

Keywords

Navigation