Skip to main content

Advertisement

Log in

When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We analysed patterns of habitat and microhabitat preferences of 19 families (comprising 135 genera and 950 species) of crustose, corticolous lichens in Costa Rica (Arthoniaceae, Arthopyreniaceae, Coenogoniaceae, Graphidaceae, Lecanoraceae, Letrouitiaceae, Monoblastiaceae, Pertusariaceae, Physciaceae, Pilocarpaceae, Porinaceae, Pyrenulaceae, Ramalinaceae, Roccellaceae, Strigulaceae, Teloschistaceae, Thelenellaceae, Thelotremataceae, Trypetheliaceae), in order to test whether Thelotremataceae are suitable predictors of undisturbed tropical rain forest and can be used as bioindicators of ecological continuity. The dataset consisted of 12,215 specimen samples and six environmental parameters recorded for each sample (altitude, degree of seasonality, vegetation type, disturbance level, substrate nature, light exposure), which were analysed by a multivariate approach using principal component analysis (PCA). The analysis showed that three of the 19 families, Letrouitiaceae, Porinaceae, and Thelotremataceae, showed significant preferences for undisturbed primary to old growth secondary forest, fully shaded to semi-exposed microhabitats, and the bark of mature tree trunks, parameters assumed to be correlated with ecological continuity of closed rain forest habitats. Thelotremataceae had broader altitudinal range than Letrouitiaceae and Porinaceae and significantly higher genus and species diversity (16 genera, 130 species) compared to Porinaceae (4 genera, 40 species) and Letrouitiaceae (1 genus, 5 species). Our results support the hypothesis that Thelotremataceae perform best as predictors of undisturbed dry and lowland to montane rain forest and are the most suitable lichen bioindicators of ecological continuity in these ecosystems. In contrast, Lecanoraceae, Pertusariaceae, Physciaceae, and Teloschistaceae, were found to be predictors of disturbed and pioneer (micro-)habitats. We also found that, among a variety of parameters tested, the Index of Ecological Continuity (IEC), adapted to the use of Thelotremataceae in tropical forests, performs best in terms of predicting disturbance levels and site history. A semi-taxonomic approach identifying morphotypes rather than genera or species yielded the same results, making this method suitable for a broader spectrum of potential users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard F, Eva H, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    PubMed  CAS  Google Scholar 

  • Aide TM, Zimmermann JK, Pascarella JB, Rivera L, Marcano-Vega H (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restor Ecol 8:328–338

    Google Scholar 

  • Alverson WS, Rodríguez LO, Moskovits DK (eds) (2001) Rapid biological inventories 02: Perú: Biabo Cordillera Azul. The Field museum, Chicago

    Google Scholar 

  • Arroyo-Mora JP, Sánchez-Azofeifa GA, Rivard B, Calvo JC, Janzen DH (2005) Dynamics in landscape structure and composition for the Chorotega region, Costa Rica, from 1960 to 2000. Agric Ecosys Environ 106:27–39

    Google Scholar 

  • Balmford A, Whitten T (2003) Who should pay for tropical conservation, and how could the costs be met? Oryx 37:238–250

    Google Scholar 

  • Barrow E, Timmer D, White S, Maginnis S (2002) Forest Landscape Restoration: Building Assets for People and Nature – Experience from East Africa. World Conservation Union (IUCN), Cambridge

    Google Scholar 

  • Bartholmess H, Erhardt W, Frahm JP, Franzen-Reuter I, John V, Kirschbaum U, Türk R, Windisch U, Wirth V (2004) Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen auf Flechten (Bioindikation). Kartierung der Diversität epiphytischer Flechten als Indikator für die Luftgüte. VDI 3957, Part 13. Verein Deutscher Ingenieure (VDI), Düsseldorf

    Google Scholar 

  • Bonnie R, Schwartzman S, Oppenheimer M, Bloomfield J (2000) Counting the costs of deforestation. Science 288:1763–1764

    PubMed  CAS  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life cycle impact assessment of land use based on the hemeroby concept . Int J Life Cycle Assess 7:339–348

    Google Scholar 

  • Brienen RJW (2005) Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees. Tekst. Proefschrift, Universiteit Utrecht

    Google Scholar 

  • Brook BW, Bradshaw CJA, Koh LP, Sodhi NS (2006) Momentum drives the crash: mass extinction in the tropics. Biotropica 38:302–305

    Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2007a) Corticolous microlichens in northeastern Brazil: Habitat differentiation between coastal Mata Atlântica, Caatinga and Brejos de Altitude. The Bryologist (in press)

  • Cáceres MES, Lücking R, Rambold G (2007b) Phorophyte specificity and environmental parameters as determinants for species composition, richness and area cover in corticolous crustose lichen communities in the Atlantic rainforest of northeastern Brazil. Mycological Progress (in press)

  • Cáceres MES, Lücking R, Rambold G (2007c) Efficiency of sampling methods for accurate estimation of species richness: Corticolous microlichens in the Atlantic rainforest of northeastern Brazil. Ecotropica (in press)

  • Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814

    Google Scholar 

  • Chaves JL, Lücking R, Sipman HJM, Umaña L, Navarro E (2004) A first assessment of the ticolichen biodiversity inventory in Costa Rica: the genus Dictyonema (Polyporales: Atheliaceae). Bryologist 107:242–249

    Google Scholar 

  • Chazdon RL, Fetcher N (1984) Light environments of tropical forests. In: Medina E, Mooney HA, Vasquez-Yanes C (eds) Physiological Ecology of Plants of the Wet Tropics. W. Junk, The Hague, pp. 27–36

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Ann Rev Ecol Sys 31:343–366

    Google Scholar 

  • Clark DA, Clark DB (2001) Getting to the canopy: Tree height growth in a neotropical rain forest. Ecology 82:1460–1472

    Article  Google Scholar 

  • Clark DB, Clark DA, Rich PM, Weiss WB, Oberbauer SB (1996) Landscape-scale evalu-ation of understory light and canopy structure: methods and application in a neotropical low-land rain forest. Can J For Res 26:747–757

    Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    PubMed  Google Scholar 

  • Cornelissen JHC, Ter Steege H (1989) Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. J Trop Ecol 5:131–150

    Google Scholar 

  • Cranston PS, Trueman JWH (1997) ‘Indicator’ organism groups in invertebrate biodiversity assessment. Mem Mus Vic 562:267–274

    Google Scholar 

  • Cunningham S, Read J (2003) Comparison of temperate and tropical rainforest tree species: growth responses to temperature. J Biogeogr 30:143–153

    Google Scholar 

  • Curran LM, Caniago I, Paoli GD, Astiani D, Kusneti M, Leighton M, Nirarita CE, Haeruman H (1999) Impact of El Niño and logging on canopy tree recruitment in Borneo. Science 286:2184–2188

    PubMed  CAS  Google Scholar 

  • Dalton R (2006) Biodiversity: Cashing in on the rich coast. Nature 442:567–569

    Google Scholar 

  • DeLeo GA, Levin S (1997) The multifaceted aspects of ecosystem integrity. Conserv Ecol 1:3

    Google Scholar 

  • Defries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. Proc Natl Acad Sci USA 99:14256–14261

    PubMed  CAS  Google Scholar 

  • Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Ann Rev Ecol Sys 18:431–451

    Google Scholar 

  • Di Stéfano JF, Ielsen VN, Hoomans J, Fournier LA (1996) Regeneración de la vegetación arbórea en una pequeña reserva forestal urbana del premontano húmedo, Costa Rica. Rev Biol Trop 44:575–580

    PubMed  Google Scholar 

  • Ehrlich PR (1996) Conservation in temperate forests: what do we need to know and do? For Ecol Manage 851:9–19

    Google Scholar 

  • Ehrlich PR, Ehrlich AH (1981) Extinction: the causes and consequences of the dissappearance of species. Random House, New York

    Google Scholar 

  • Faith DP, Walker PA (1996a) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodivers Conserv 54:399–415

    Google Scholar 

  • Faith DP, Walker PA (1996b) How do indicator groups provide information about the relative biodiversity of different sets of areas?: on hotspots, complementarity and pattern-based approaches. Biodivers Lett 31:18–25

    Google Scholar 

  • FAO (1981) Los Recursos Forestales de la América Tropical. Proyecto de Evaluación de los Recursos Forestales Tropicales. FAO, Rome

    Google Scholar 

  • Fearnside PM (2000) Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46:115–145

    CAS  Google Scholar 

  • Fearnside PM (2001) Saving tropical forests as a global warming countermeasure: An issue that divides the environmental movement. Ecol Econ 39:167–184

    Google Scholar 

  • Fearnside PM, Laurance WF (2004) Tropical deforestation and greenhouse gas emissions. Ecol Appl 14:982–986

    Google Scholar 

  • Flather CH, Wilson KR, Dean DJ, McComb WC (1997) Identifying gaps in conservation networks: Of indicators and uncertainty in geographic-based analyses. Ecol Appl 72:531–542

    Google Scholar 

  • Floren A, Linsenmair KE (2005) The importance of primary tropical rain forest for species diversity: an investigation using arboreal ants as an example. Ecosystems 8:559–567

    Google Scholar 

  • Frisch A, Kalb K, Grube M (2006) Contributions towards a new systematics of the lichen family Thelotremataceae. Bibl Lichenol 92:1–556

    Google Scholar 

  • Gauslaa Y, Solhaug K-A (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354

    Google Scholar 

  • Gómez LD (1986) Vegetación de Costa Rica. In: Gómez LD (ed) Vegetación y Clima de Costa Rica, vol 1. Editorial Universidad Estatal a Distancia, San José (Costa Rica)

    Google Scholar 

  • Gradstein SR, Hietz P, Lücking R, Lücking A, Sipman HJM, Vester HFM, Wolf JHD, Gardette E (1996) How to sample the epiphytic diversity of tropical rain forests. Ecotropica 2:59–72

    Google Scholar 

  • Grubb PJ (1971) Interpretation of the “Massenerhebung” effect on tropical mountains. Nature 229:44–45

    PubMed  CAS  Google Scholar 

  • Hale ME Jr (1974) Morden-Smithsonian expedition to Dominica: the lichens (Thelotremataceae). Smith Contrib Bot 16:1–46

    Google Scholar 

  • Hale ME Jr (1978) A revision of the lichen family Thelotremataceae in Panama. Smith Contrib Bot 38:1–60

    Google Scholar 

  • Hale ME Jr (1981) A revision of the lichen family Thelotremataceae in Sri Lanka. Bull Br Mus 8:227–332

    Google Scholar 

  • Hartshorn GS (1978) Treefalls and tropical forest dynamics. In: Tomlinson PB, Zimmerman MH (eds) Tropical Trees as Living Systems. Cambridge University Press, Cambridge, UK, pp 617–638

    Google Scholar 

  • Hastenrath S (1968) Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of Central America and southern Mexico. In: Troll C (ed) Colloquim Goegraphicum, Band 9. Geoecology of the Mountainous Regions in the Tropical Americas. Proceedings of the UNESCO Mexico Symposium 1966, pp 122–130

  • Hawksworth D, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    PubMed  CAS  Google Scholar 

  • Hawksworth DL, Rose F (1976) Lichens as Pollution Monitors. Edward Arnold, London

    Google Scholar 

  • Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382

    Google Scholar 

  • Herrera W (1985) Clima de Costa Rica. In: Gómez LD (ed) Vegetación y Clima de Costa Rica, vol 2. Editorial Universidad Estatal a Distancia, San José, Costa Rica

    Google Scholar 

  • Holdridge LR (1967) Life Zone Ecology. Tropical Science Center, San José (Costa Rica)

    Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones: a pilot study. Oxford, Pergamon Press

    Google Scholar 

  • Holz I, Gradstein SR (2005) Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica – species richness, community composition and ecology. Plant Ecol 178:89–109

    Google Scholar 

  • Hörnberg GO, Zackrisson U, Segerström U, Svensson BW, Ohlson M and Bradshaw RHW (1998) Boreal swamp forests biodiversity ‘hotspots’ in an impoverished forest landscape. Bioscience 48:795–802

    Google Scholar 

  • Insarov GE, Schroeter B (2002) Lichen monitoring and climate change. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with Lichens – Monitoring Lichens, NATO Science Series, IV, vol 7. Kluwer, Dordrecht, pp 183–201

    Google Scholar 

  • ITTO (2002) Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forest. International Tropical Timber Organization, Yokohama

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106

    PubMed  CAS  Google Scholar 

  • Jentsch A, Beierkuhnlein C, White S (2002) Scale, the dynamic stability of forest ecosystems, and the persistence of biodiversity. Silva fenn 36:393–400

    Google Scholar 

  • Jonsson B-G, Jonsell M (1999) Exploring potential biodiversity indicators in boreal forests. Biodivers Conserv 8:1417–1433

    Google Scholar 

  • Kalb K (2004) New or otherwise interesting lichens II. Bibl Lichenol 88:301–329

    Google Scholar 

  • Kappelle M, Geuze T, Leal ME, Cleff AM (1996) Successional age and forest structure in a Costa Rican upper montane Quercus forest. J Trop Ecol 12:681—698

    Google Scholar 

  • Komposch H, Hafellner J (1999) List of lichenized fungi so far observed in the tropical lowland rain forest plot Surumoni (Venezuela, Estado Amazonas). Fritschiana 19:1–10

    Google Scholar 

  • Komposch H, Hafellner J (2000) Diversity and vertical distribution of lichens in a Venezuelan tropical lowland rain forest. Selbyana 21:11–24

    Google Scholar 

  • Komposch H, Hafellner J (2003) Species composition of lichen dominated corticolous communities: a lowland rain forest canopy compared to an adjacent shrubland in Venezuela. Bibl Lichenol 86:351–367

    Google Scholar 

  • Kirschbaum U, Wirth V (1997) Flechten erkennen, Luftgüte bestimmen. Ulmer, Stuttgart

    Google Scholar 

  • Kremen C, Niles JO, Dalton MG, Daily GC, Ehrlich PR, Fay JP, Grewal D, Guillery RRP (2000) Economic incentives for rain forest conservation across scales. Science 288:1828–1832

    PubMed  CAS  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632

    PubMed  CAS  Google Scholar 

  • Landres P, Verner BJ, Thomas JW (1988) Ecological uses of vertebrate indicator species: a critique. Conserv Biol 2:316–328

    Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Condit R, D’Angelo S, Andrade A (2004) Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For Ecol Manage 190:131–143

    Google Scholar 

  • Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836

    PubMed  CAS  Google Scholar 

  • Lawton RO, Nair US, Pielke RA, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587

    PubMed  CAS  Google Scholar 

  • LeBlanc F, De Sloover J (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can J Bot 48:1485–1496

    Google Scholar 

  • Lewin R (1986) Mass extinctions select different victims. Science 231:219–220

    PubMed  Google Scholar 

  • Lücking R (1997) The use of foliicolous lichens as bioindicators in the tropics, with special reference to the microclimate. Abstr Bot 21(1):99–116

    Google Scholar 

  • Lücking R (1998) Ecology of foliicolous lichens at the ‘Botarrama’ trail (Costa Rica), a neotropical rainforest site. Part II. Patterns of diversity and area cover, and their dependence on microclimate and phorophyte species. Ecotropica 4:1–24

    Google Scholar 

  • Lücking R (1999) Ecology of foliicolous lichens at the ‘Botarrama’ trail (Costa Rica), a neotropical rainforest. IV. Species associations, their salient features and their dependence on environmental variables. Lichenologist 31:269–289

    Google Scholar 

  • Lücking R (2001) Lichens on leaves in tropical rainforests: life in. a permanently ephemerous environment. Diss Bot 346:41–77

    Google Scholar 

  • Lücking R, Sipman HJM, Umaña-Tenorio L (2004). TICOLICHEN—the Costa Rican lichen biodiversity inventory as a model for lichen inventories in the tropics. In: Randlane T, Saag A (eds) The 5th IAL Symposium. Lichens in Focus. Tartu University Press, Tartu, 32 pp

    Google Scholar 

  • Lücking R, Chaves JL, Sipman HJM, Umaña L, Aptroot A (2007) A first assessment of the Ticolichen biodiversity inventory in Costa Rica: The genus Graphis (Ascomycota: Ostropales: Graphidaceae). Fieldiana (in press).

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    PubMed  Google Scholar 

  • Marcelli MP (1992) Ecologia liquênica nos manguezais do sul-sudeste Brasileiro. Bibl Lichenol 47(i–vii):1–288

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    PubMed  CAS  Google Scholar 

  • Martin PH, Sherman RE, Fahey TJ (2004) Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 36:297–317

    Google Scholar 

  • McCune B (2000) Lichen communities as indicators of forest health. Bryologist 103:353–356

    Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software, Gleneden Beach, Oregon

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate Analysis of Ecological Data, version 4.0. MjM Software, Gleneden Beach, Oregon, USA

    Google Scholar 

  • McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds) (1994) La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago

    Google Scholar 

  • Montfoort D, Ek R (1990) Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rainforest in French Guiana. Herbarium, Institute of Systematic Botany, Utrecht

    Google Scholar 

  • Myers N (1991) Trees by the billions: a blueprint for ecology. Int Wildl 21:12–15

    Google Scholar 

  • Nilsson S-G, Baranowski R (1994) Indikatorer på jätteträdskontinuitet—Svenska förekomster av knäppare som är beroende av grova, levande träd. Entomol Tidskr 115:81–97

    Google Scholar 

  • Nimis PL (1999) Linee guida per la bioindicazione degli effetti dell’inquinamento tramite la biodiversità dei licheni epifiti. In: Piccini C, Salvati S (eds) Atti Workshop Biomonitoraggio Qualità dell’Aria sul territorio Nazionale, pp 267–277. ANPA, Ser. Atti, 2

  • Nimis PL, Scheidegger C, Wolseley PA (eds) (2002) Monitoring with Lichens—Monitoring Lichens. NATO Science Series. IV. Earth and Environmental Sciences, 7. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Nordén B, Appelquist T (2001) Conceptual problems of Ecological Continuity and its bioindicators. Biodivers Conserv 10:779–791

    Google Scholar 

  • Nöske NM (2004) Effekte anthropogener Störung auf die Diversität kryptogamischer Epiphyten (Flechten, Moose) in einem Bergregenwald in Südecuador. Ph.D. Thesis, Mathematisch-Naturwissenschaftliche Fakultät, Georg-August-Universität zu Göttingen.

  • Pearce D (2001) How valuable are the tropical forests? Demonstrating and capturing economic value as a means of addressing the causes of deforestation. Conseil d’Analyse Économique, Seminaire Economie de L’Environnement et du Developpement Durable, Paris

  • Péres REP (2005) Impacto del Manejo Forestal en los Macrolíquenes Cortícolas de Pinus patula (Schl. & Cham) an la Sierra de Juárez, Oaxaca. PhD Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, México

  • Phillips OL, Hall P, Gentry AH, Sawyer SA, Vázquez R (1994) Dynamics and species richness of tropical rain forests. Proc Natl Acad Sci USA 91: 2805–2809

    PubMed  CAS  Google Scholar 

  • Prendergast JR, Eversham BC (1997) Species richness covariance in higher taxa: empirical tests of the biodiversity indicator concept. Ecography 20:210–216

    Google Scholar 

  • Raup DM (1986) Biological extinction in earth history. Science 231:1528–1533

    PubMed  CAS  Google Scholar 

  • Remmert H (1991) The mosaic-cycle concept of ecosystems—an overview. In: Remmert H (ed) The Mosaic-cycle Concept of Ecosystems. Springer, Berlin, pp 1–21

    Google Scholar 

  • Rose F (1974) The epiphytes of oak. In: Morris MG, Perring FH (eds) The British oak: its history and natural history. Classey Faringdon, UK, pp 250–273

    Google Scholar 

  • Rose F (1976) Lichenological indicators of age and ecological continuity in Woodlands. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 279–307

    Google Scholar 

  • Rose F (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing enviroment. Oxford Scientific Publications, Oxford, pp 211–233

    Google Scholar 

  • Rose F, Coppins S (2002) Site assessment of epiphytic habitats using lichen indices. In: Nimis PL et al (eds) Monitoring with lichens – Monitoring lichens NATO science series, IV, vol 7. Kluwer, Dordrecht, pp 434–348

  • Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Martin JB, Anselmetti FS, Ariztegui D, Guilderson TP (2002) Influence of vegetation change on watershed hydrology: implications for paleoclimatic interpretation of lacustrine δ 18 O records. J Paleolimnol 27:117–131

    Google Scholar 

  • Sagar R, Raghubanshi AS, Singh JS (2003) Asymptotic models of species-area curve for measuring diversity of dry tropical forest tree species. Curr Sci 84:1555–1560

    Google Scholar 

  • Sanchez-Azofeifa GA, Harris RC, Skole DL (2001) Deforestation in Costa Rica: A quantitative analysis using remote sensing imagery. Biotropica 33:378–384

    Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447

    Google Scholar 

  • Scheiner SM (2004) A mélange of curves – further dialogue about species-area relationships. Glob Ecol Biogeogr 13:479–484

    Google Scholar 

  • Scheiner SM, Cox SB, Willig M, Mittelbach GG, Osenberg C, Kaspari M (2000) Species richness, species-area curves and Simpson’s paradox. Evol Ecol Res 2: 791–802

    Google Scholar 

  • Selva SB (1994) Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. Bryologist 97:424–429

    Google Scholar 

  • Selva SB (1996) Using lichens to assess ecological continuity in northeastern forests. In: Byrd M (ed) Eastern old-growth forests – prospects for rediscovery and recovery. Island Press,Washington, DC, pp 35–48

    Google Scholar 

  • Shukla J, Shukla J, Nobre C, Sellers P (1990) Amazon deforestation and climate change. J Sci 247:1322–1325

    Google Scholar 

  • Silva Filho AA, Toniolo ER, Gabínio M, Oliveira SFS (1998) Mapeamento da cobertura florestal nativa lenhosa do estado de Pernambuco (Documento de Campo FAO no. 17). PNDU, FAO, IBAMA, Governo de Pernambuco

  • Sipman HJM (1996) Corticolous lichens. In: Gradstein SR, Hietz P, Lücking R, Lücking A, Sipman HJM, Vester HFM, Wolf JHD, Gardette E (eds) How to sample the epiphytic diversity of tropical rain forests, pp 66–67. Ecotropica 2: 59–72

  • Sipman HJM, Harris RC (1989) Lichens. In Lieth H, Werger MJA (eds) Tropical rain forest ecosystems biogeographical and ecological studies (Ecosystems of the World 14B). Elsevier, Amsterdam, pp 303–309

    Google Scholar 

  • Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910

    PubMed  Google Scholar 

  • Smith AP, Hogan KP, Idol JR (1992) Spatial and temporal patterns of light and canopy structure in lowland tropical moist forest. Biotropica 24:503–511

    Google Scholar 

  • Staiger B (2002) Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlicheren Gliederung. Bibl Lichenol 85:1–526

    Google Scholar 

  • Sterck FJ (1997) Trees and Light: Tree Development and Morphology in relation to light availability in a tropical rain forest in French Guiana. PhD Thesis, Wageningen Agricultural University, Ponser & Looijen, Wageningen

  • Sterck FJ, Clark DB, Clark DA, Bongers F (1999) Light fluctuations, crown traits, and response delays for tree saplings in a Costa Rican lowland rain forest. J Trop Ecol 5:83–95

    Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effect of climate change on tropical montane cloud forests. Nature 398:608–610

    CAS  Google Scholar 

  • Stokstad E (2005) Learning to adapt. Science 309:688–690

    PubMed  CAS  Google Scholar 

  • Sverdrup-Thygeson A (2001) Can ‘continuity indicator species’ predict species richness or red-listed species of saproxylic beetles? Biodivers Conserv 10:815–832

    Google Scholar 

  • Terbourgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24:283–292

    Google Scholar 

  • Turton SM (1992) Understory light environments in a northeast Australian rain forest before and after a tropical cyclone. J Trop Ecol 8:241–252

    Article  Google Scholar 

  • Uhl C, Buschbacher R, Serrão EAS (1988) Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J Ecol 6:663–681

    Google Scholar 

  • Whitfield J (2001) Vital signs. Nature 411:989–990

    PubMed  CAS  Google Scholar 

  • Whitmore TC (1990) An introduction to tropical rainforests. Clarendon Press, Oxford

    Google Scholar 

  • Wilson EO (1984) Biophilia. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1999) The diversity of life. W. W. Norton & Co., New York

    Google Scholar 

  • Wilson EO (2002) The future of life. Knopf, New York

    Google Scholar 

  • Wirth M, Hale ME Jr (1963) The lichen family Graphidaceae in Mexico. Contrib US Natl Herb 36:63–119

    Google Scholar 

  • Wirth M, Hale ME Jr (1978) Morden-Smithsonian expedition to Dominica: the lichens (Graphidaceae). Smith Contrib Bot 40:1–64

    Google Scholar 

  • Wolseley PA (2002) Using corticolous lichens of tropical forests to assess environmental changes. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with Lichens – Monitoring Lichens, Nato Science Series IV Earth and Environmental Sciences. Kluwer Academic Publishers, Dordrecht, pp 1–2

    Google Scholar 

  • Wolseley PA, Aguirre-Hudson B (1991) Lichens as indicators of environmental change in the tropical forests of Thailand. Glob Ecol Biogeogr Lett 1:170–175

    Google Scholar 

  • Wolseley PA, Aguirre-Hudson B (1997a) The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. J Biogeogr 24:327–343

    Google Scholar 

  • Wolseley PA, Aguirre-Hudson B (1997b) Fire in tropical dry forests: corticolous lichens as indicators of recent ecological changes in Thailand. J Biogeogr 24:345–362

    Google Scholar 

  • Wolseley PA, Moncrieff C, Aguirre-Hudson B (1994) Lichens as indicators of environ-mental stability and change in the tropical forests of Thailand. Glob Ecol Biogeogr Lett 4:116–123

    Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Google Scholar 

  • Wright SJ, Muller-Landau HC (2006) The future of tropical forest species. Biotropica 38:287–301

    Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466

    Google Scholar 

  • Zedda L (2002) The epiphytic lichens on Quercus in Sardinia (Italy) and their value as ecological indicators. Englera 24:1–468

    Google Scholar 

Download references

Acknowledgements

This study was made possible by grants from the NSF to The Field Museum (DEB 0206125; PI R. Lücking/DEB 0516116; PI H. T. Lumbsch, CoPI R. Lücking). Most of the Thelotremataceae material and other crustose lichens analysed in this study were collected by R. Lücking, J. L. Chaves, and H. J. M. Sipman, but collections and field data were also contributed by A. Aptroot, W. R. Buck, E. Fletes, M. Grube, I. López, E. Navarro, M. P. Nelsen, M. T. Trest, L. Umaña, and S. Will-Wolf. We thank INBio and the Costa Rican MINAE and SINAC for assistance with working and collection permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eimy Rivas Plata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas Plata, E., Lücking, R. & Lumbsch, H.T. When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodivers Conserv 17, 1319–1351 (2008). https://doi.org/10.1007/s10531-007-9289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9289-9

Keywords

Navigation