Skip to main content

Advertisement

Log in

Identification of Biodiversity Conservation Priorities using Predictive Modeling: An Application for the Equatorial Pacific Region of South America

  • Original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We used predictive modeling of species distributions to identify conservation priority areas in the equatorial Pacific region of western Ecuador and northwestern Peru. Museum and herbarium data and predictive models of species distributions are increasingly being used to assess the conservation status of individual species. In this study, we assembled occurrence data for 28 species of vascular plants, birds, and mammals to assess the conservation priorities of the set of natural communities that they represent. Environmental variables were used to predict the species’ distributions using correlative modeling as an alternative to point data, which has been the traditional approach to identify critical areas. Specific priority sites for conservation were identified using an area-selection algorithm based on simulated annealing. Four scenarios of prioritization were created using different criteria for the spatial compactness of the selected sites and fragmentation of remnant habitat. The results provide a preliminary assessment of conservation priorities for the dry ecosystems of the Equatorial Pacific region, and will serve as guidelines to focus future fieldwork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLM:

Boundary length modifier

CDC:

Conservation Data Center

CRU CL 2.0:

Climatic Research Unit’s Climatologic database

DEM:

Digital Elevation Model

DINAREN:

National Directorate of Natural Resources of Ecuador

ENSO:

El Niño/Southern Oscillation

GARP:

Genetic Algorithm for Rule Set Prediction

GIScience:

Geographic Information Science

INRENA:

National Institute of Natural Resources of Peru

IUCN:

International Union for the Conservation of Nature and Natural Resources

LULC:

Land Use/Land Cover

MBG:

Missouri Botanical Garden

PET:

Potential evapotranspiration

PSAD:

Provisional South-American Datum

SPOT:

Spatial Portfolio Optimization Tool

SRTM:

Shuttle Radar Topographic Mission

TNC:

The Nature Conservancy

UTM:

Universal Transversal Mercator

VAST:

Missouri Botanical Garden’s VAScular Tropicos database

References

  • Anderson RP, Gómez-Laverde M, Peterson AT (2002a) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141

    Google Scholar 

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002b) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16

    Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Google Scholar 

  • Anderson RP, Martínez-Meyer E (2004) Modeling Species’ distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179

    Google Scholar 

  • Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345

    Google Scholar 

  • Armenteras D, Gast F, Villareal H (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biol Conserv 113:245–256

    Google Scholar 

  • Bernex N, Revesz B (1988) Atlas regional de Piura. Centro de Investigación y Promoción del Campesinado, Pontificia Universidad Católica del Perú, Lima

    Google Scholar 

  • BirdLife International (2003) BirdLife’s online World Bird Database: the site for bird conservation. Version 2.0. BirdLife International, Cambridge. Available from http://www.birdlife.org (accessed February 2004)

  • Bonn A, Gaston KJ (2005) Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodivers Conserv 14:1083–1100

    Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Google Scholar 

  • Cabeza M, Moilanen A (2001) Design of reserve networks and the persistence of biodiversity. Trends Ecol Evol 16:242–248

    PubMed  Google Scholar 

  • Cain ML, Damman H, Muir A (1998) Seed dispersal and the Holocene migration of woodland herbs. Ecol Monogr 68:325–347

    Google Scholar 

  • Caviedes CN (2001) El Niño in history: storming through the ages. University Press of Florida, Gainesville, Florida

    Google Scholar 

  • Ceballos G (1995) Vertebrate diversity, ecology, and conservation in Neotropical dry forests. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, New York, pp 195–200

    Google Scholar 

  • Cerón C, Palacios W, Valencia R, Sierra R (1999) Las formaciones naturales de la costa del Ecuador. In: Sierra R (ed) Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental. Proyecto INEFAN/GEF-BIRF y EcoCiencia, Quito, Ecuador, pp 55–78

    Google Scholar 

  • Church RL, Stoms DM, Davis FW (1996) Reserve selection as a maximal covering location problem. Biol Conserv 76:105–112

    Google Scholar 

  • Cowell CM, Parker AJ (2004) Biogeography in the Annals. Ann Assoc Am Geogr 94:256–268

    Google Scholar 

  • Crews-Meyer KA (2002) Characterizing landscape dynamism using paneled-pattern metrics. Photogram Eng Remote Sens 68:1031–1040

    Google Scholar 

  • Davis S, Heywood VH, Hamilton AC (eds) (1997) Centres of plant diversity, volume 3: the Americas. IUCN, Gland, Switzerland

    Google Scholar 

  • Dirección Nacional de Recursos Naturales (DINAREN). Undated a. Mapa Geológico del Ecuador. Escala 1:250,000. DINAREN, Quito, Ecuador

  • Dirección Nacional de Recursos Naturales (DINAREN). Undated b. Mapa Geomorfológico del Ecuador. Escala 1:250,000. DINAREN, Quito, Ecuador

  • Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP, Ledec G (1995) A conservation assessment of the terrestrial ecosystems of Latin America and the Caribbean. World Wildlife Fund and World Bank, Washington, DC

    Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16

    PubMed  Google Scholar 

  • Faith DP, Walker PA (2002) The role of trade-offs in biodiversity conservation planning: linking local management, regional planning and global conservation efforts. J Biosci 27:393–407

    PubMed  Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363

    PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence–absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Gibson LA, Wilson BA, Cahill DM, Hill J (2004) Modeling habitat suitability of the swamp antechinus (Antechinus minimus maritimus) in the coastal heathlands of southern Victoria, Australia. Biol Conserv 117:143–150

    Google Scholar 

  • Gillespie TW (1999) Life history characteristics and rarity of woody plants in tropical dry forest fragments of Central America. J Trop Ecol 15:637–649

    Google Scholar 

  • Gillespie TW (2000) Rarity and conservation of forest birds in the tropical dry forest region of Central America. Biol Conserv 96:161–168

    Google Scholar 

  • Gillespie TW, Grijalva A, Farris CN (2000) Diversity, composition and structure of tropical dry forests in Central America. Plant Ecol 147:37–47

    Google Scholar 

  • Gómez EN (1999) Nuevo Atlas del Ecuador. Ministry of Education, Quito, Ecuador

    Google Scholar 

  • Goodchild MF (2003) Geographic Information Science and systems for environmental management. Ann Rev Environ Resour 28:493–519

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    CAS  Google Scholar 

  • Harris AT, Asner GP, Miller ME (2003) Changes in vegetation structure after long-term grazing in pinyon-juniper ecosystems: Integrating imaging spectroscopy and field studies. Ecosystems 6:368–383

    Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Google Scholar 

  • Holbrook NM, Whitbeck JL, Mooney HA (1995) Drought responses of Neotropical dry forest trees. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, New York, pp 243–276

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Instituto Nacional de Recursos Naturales (INRENA) (1995) Mapa Forestal del Perú. Escala 1:1’000,000. INRENA, Lima Peru

    Google Scholar 

  • Instituto Nacional de Recursos Naturales (INRENA) Undated. Mapa Geológico y de Fallas Geológicas. Escala 1:250,000. INRENA, Lima, Peru

  • International Union for the Conservation of Nature and Natural Resources (IUCN) (2003) 2003 IUCN Red List of Threatened Species. Available from http://www.redlist.org (accessed February 2004)

  • Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24:241–250

    Google Scholar 

  • Janzen DH (1986) Tropical dry forests, the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 130–137

    Google Scholar 

  • Josse C, Navarro G, Comer P, Evans R, Faber-Langendoen D, Fellows M, Kittel G, Menard S, Pyne M, Reid M, Schulz K, Snow K, Teague J (2003) Ecological Systems of Latin America and the Caribbean: a working classification of terrestrial systems. NatureServe, Arlington, VA. Available from: http://www.natureserve.org/library/LACEcologicalSystems.pdf (accessed January 2004)

  • Kelley C, Garson J, Aggarwal A, Sarkar S (2002) Place prioritization for biodiversity reserve network design: a comparison of the SITES and ResNet software packages for coverage and efficiency. Divers Distrib 8:297–306

    Google Scholar 

  • Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28:39–52

    Google Scholar 

  • Kirkpatrick JB (1983) An iterative method for establishing priorities for the selection of nature reserves: an example from Tasmania. Biol Conserv 25:127–134

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    PubMed  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    CAS  PubMed  Google Scholar 

  • Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci 27:309–326

    CAS  PubMed  Google Scholar 

  • McDonnell M, Possingham HP, Ball IR, Cousins EA (2002) Mathematical methods for spatially cohesive reserve design. Environ Model Assess 7:107–114

    Google Scholar 

  • Meir E, Andelman S, Possingham HP (2004) Does conservation planning matter in a dynamic and uncertain world? Ecol Lett 7:615–622

    Google Scholar 

  • Mertens B, Lambin EF (2000) Land-cover-change trajectories in southern Cameroon. Ann Assoc Am Geogr 90:467–494

    Google Scholar 

  • Missouri Botanical Garden (MBG) (2003) TROPICOS database. MBG, Saint Louis. Available from http://www.mobot.mobot.org/W3T/Search/vast.html (accessed June 2004)

  • Munday M, Munday G (1992) The climate of south-west Ecuador. In: Best B (ed) The threatened forests of south-west Ecuador. Biosphere Publications, Leeds, pp 7–59

    Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Ann Rev Ecol Syst 17:67–88

    Google Scholar 

  • Murphy PG, Lugo AE (1995) Dry forest of Central America and the Caribbean islands. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, New York, pp 9–34

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    CAS  PubMed  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Google Scholar 

  • Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of elapid snakes of Australia. Bureau of Flora and Fauna, Canberra, pp 4–15

    Google Scholar 

  • Norton-Griffiths M, Southey C (1995) The opportunity costs of biodiversity conservation in Kenya. Ecol Econ 12:125–139

    Google Scholar 

  • O’Connor RJ (2002) The conceptual basis of species distribution modeling: time for a paradigm shift? In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, DC, pp 25–33

    Google Scholar 

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Mo Bot Gard 89:199–294

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D‘amico JA, Itoua I, Strand H, Morrison J, Loucks CJ, Allnut TF, Ricketts TH, Kira Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial Ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Google Scholar 

  • Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. Condor 103:599–605

    Google Scholar 

  • Peterson AT, Ball LG, Cohoon KC (2002a) Predicting distributions of Mexican birds using ecological niche modeling methods. Ibis 144:E27–E32

    Google Scholar 

  • Peterson AT, Egbert SL, Sánchez-Cordero V, Price KP (2000) Geographic analysis of conservation priority: endemic birds and mammals in Veracruz, Mexico. Biol Conserv 93:85–94

    Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002b) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    CAS  Google Scholar 

  • Peterson AT, Sánchez-Cordero V, Soberón J, Bartley J, Buddemeier RH, Navarro-Siguenza AG (2001) Effects of global climate change on geographic distributions of Mexican Cracidae. Ecol Model 144:21–30

    Google Scholar 

  • Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J␣Parasitol 33:919–931

    PubMed  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    CAS  PubMed  Google Scholar 

  • Peterson AT, Stockwell DRB, Kluza DA (2002c) Distributional prediction based on ecological niche modeling of primary occurrence data. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, DC, pp␣617–623

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling. BioScience 51:363–371

    Google Scholar 

  • Petit CC, Lambin EF (2002) Impact of data integration technique on historical land-use/land-cover change: comparing historical maps with remote sensing data in the Belgian Ardennes. Landsc Ecol 17:117–132

    Google Scholar 

  • Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15:648–657

    Google Scholar 

  • Possingham H, Ball I, Andelman S (2000) Mathematical methods for identifying representative reserve networks. In: Fersona S, Burgman M (eds) Quantitative methods for conservation biology. Springer-Verlag, New York, pp 291–305

    Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. Conserv Biol 13:484–492

    Google Scholar 

  • Pressey RL, Logan VS (1998) Size of selection units for future reserves and its influence on actual vs. targeted representation of features: a case study in western New South Wales. Biological Conservation 85:305–319

    Google Scholar 

  • Pressey RL, Nicholls AO (1989) Efficiency in conservation evaluation: scoring versus iterative approaches. Biol Conserv 50:199–218

    Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Google Scholar 

  • Redford KH, Coppolillo P, Sanderson EW, da Fonseca G, Dinerstein E, Groves C, Mace G, Maginnis S, Mittermeier RA, Noss R, Olson D, Robinson JG, Vedder A, Wright M (2003) Mapping the conservation landscape. Conserv Biol 17:116–131

    Google Scholar 

  • Rempel RS, Carr AP (2003) Patch Analyst extension for ArcView: version 3. Available from http://www.flash.lakeheadu.ca/∼rrempel/patch/index.htm (accessed May 2004)

  • Rodrigues ASL, Gaston KJ (2001) How large do reserve networks need to be? Ecol Lett 4:602–609

    Google Scholar 

  • Rodríguez LO, Young KR (2000) Biological diversity of Peru: determining priority areas for conservation. Ambio 29:329–337

    Google Scholar 

  • Sánchez-Cordero V, Martínez-Meyer E (2000) Museum specimen data predict crop damage by tropical rodents. Proc Natl Acad Sci 97:7074–7077

    PubMed  Google Scholar 

  • Sarkar S, Justus J, Fuller T, Kelley C, Garson J, Mayfield M (2005) Effectiveness of environmental surrogates for the selection of conservation area networks. Conserv Biol 19:815–825

    Google Scholar 

  • Scott JM, Davis F, Csuti B, Noss R, Butterfield B, Groves C, Anderson H, Caicco S, D’Erchia F, Edwards TC, Ulliman J, Wright G (1993) GAP analysis: a geographic approach to protection of biological diversity. Wildl Monogr 123:1–41

    Google Scholar 

  • Shoutis D (2003) SPOT: the spatial portfolio optimization tool. The Nature Conservancy, Washington, DC

    Google Scholar 

  • Sierra R, Campos F, Chamberlin J (2002) Assessing biodiversity conservation priorities: ecosystem risk and representativeness in continental Ecuador. Landsc Urban Plan 59:95–110

    Google Scholar 

  • Sierra R, Cerón C, Palacios W, Valencia R (1999) Mapa de Vegetación del Ecuador Continental, Escala 1:1’000,000. INEFAN/GEF-BIRF Project and EcoCiencia, Quito, Ecuador

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  • Soulé ME (1991) Conservation: tactics for a constant crisis. Science 253:744–750

    PubMed  Google Scholar 

  • Soulé ME, Sanjayan MA (1998) Conservation targets: do they help? Science 279:2060–2061

    PubMed  Google Scholar 

  • Stevens S (ed) (1997) Conservation through survival: indigenous peoples and protected areas. Island Press, Washington, DC

    Google Scholar 

  • Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Math Comput Simul 33:385–390

    Google Scholar 

  • Stockwell DRB, Peters DP (1999) The GARP modeling system: Problems and solutions to automated spatial prediction. Int J Geogr Inform Syst 13:143–158

    Google Scholar 

  • Stockwell DRB, Peterson AT (2002a) Controlling bias in biodiversity data. In: Scott JM, Heglund PJ, Morrison ML et al (eds) Predicting species occurrences: issues of scale and accuracy. Island Press, Washington, DC, pp 537–545

    Google Scholar 

  • Stockwell DRB, Peterson AT (2002b) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Google Scholar 

  • Stockwell DRB, Peterson AT (2003) Comparison of resolution of methods used in mapping biodiversity patterns from point-occurrence data. Ecol Indic 3:213–221

    Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. The University of Chicago Press, Chicago

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Tirira D (ed) (2001) Libro rojo de los mamíferos del Ecuador. Simbioe, EcoCiencia, Ministerio del Ambiente, y UICN, Quito, Ecuador

  • Tirira D, Padilla D, Díaz M, Almeida P, Cortes K (2004) Portafolio de sitios prioritarios de conservación de la Ecorregión Pacífico Ecuatorial, capítulo terrestre. Alianza CDC-Jatun Sacha y TNC, Quito, Ecuador

    Google Scholar 

  • Turpie JK (1995) Prioritizing South African estuaries for conservation: a practical example using waterbirds. Biol Conserv 74:175–185

    Google Scholar 

  • Valencia R, Pitman N, León-Yánez S, Jørgensen PM (eds) (2000) Libro rojo de las plantas endémicas del Ecuador (2000). Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito, Ecuador

    Google Scholar 

  • Valutis L, Mullen R (2000) The Nature Conservancy’s approach to prioritizing conservation action. Environ Sci Policy 3:341–346

    Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254

    Google Scholar 

  • Williams PH (1998) Key sites for conservation: area-selection methods for biodiversity. In: Mace GM, Balmford A, Ginsberg JR (eds) Conservation in a changing world. Cambridge University Press, Cambridge, pp 211–249

    Google Scholar 

  • Williams PH, Margules CR, Hilbert DW (2002) Data requirements and data sources for biodiversity priority area selection. J Biosci 27:327–338

    CAS  PubMed  Google Scholar 

  • Wilson EO (1999) The diversity of life, 2nd edn. Norton & Company Inc., New York

    Google Scholar 

  • Young KR, Blumler MA, Daniels LD, Veblen TT, Ziegler SS (2003) Biogeography. In: Gaile GL, Willmott CJ (eds) Geography in America at the dawn of the 21st century. Oxford University Press, Oxford, pp 17–31

    Google Scholar 

  • Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280

    Google Scholar 

  • Zerner C (ed) (2000) People, plants, and justice: the politics of nature conservation. Columbia University Press, New York

    Google Scholar 

  • Zhang J, Goodchild MF (2002) Uncertainty in geographical information. Taylor and Francis, London

    Google Scholar 

Download references

Acknowledgements

We would like to thank The Nature Conservancy for providing funds for the travel of the first author to Ecuador. The staff of TNC’s Equatorial Pacific Project and the Jatun Sacha/CDC Alliance provided their kind advice and access to data without which this study would not have been possible. Many thanks are due to Blanca León and Diego Tirira for their feedback in the process of selection of plant and vertebrate species, and to one anonymous reviewer who provided constructive comments. All the arguments made in this article remain the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Peralvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralvo, M., Sierra, R., Young, K.R. et al. Identification of Biodiversity Conservation Priorities using Predictive Modeling: An Application for the Equatorial Pacific Region of South America. Biodivers Conserv 16, 2649–2675 (2007). https://doi.org/10.1007/s10531-006-9077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-006-9077-y

Keywords

Navigation