Skip to main content

Advertisement

Log in

Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation

Biological Invasions Aims and scope Submit manuscript

Abstract

Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.1038/nature14952

    Google Scholar 

  • Alsos I, Ware C, Elven R (2015) Past Arctic aliens have passed away, current ones may stay. Biol Invasions 17:3113–3123

  • Bennett JR, Shaw JD, Terauds A, Smol JP, Aerts R, Bergstrom DM, Blais JM, Cheung WWL, Chown SL, Lea M-A, Nielsen UN, Pauly D, Reimer KJ, Riddle MJ, Snape I, Stark JS, Tulloch VJ, Possingham HP (2015) Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front Ecol Environ 13:316–324

    Article  Google Scholar 

  • Bertelsmeier C, Guénard B, Courchamp F (2013) Climate change may boost the invasion of the Asian Needle Ant. PLoS One 8(10):e75438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertelsmeier C, Luque GM, Hoffmann BD, Courchamp F (2015) Worldwide ant invasions under climate change. Biodivers Conserv 24:117–128

    Article  Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gegout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520

    Article  CAS  PubMed  Google Scholar 

  • Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and Australia’s biodiversity: impacts predictions and progress towards control. Turner Review No. 17. Aust J Bot 56:279–310

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629–1641

    Article  Google Scholar 

  • Crawford RMM (2014) Tundra-taiga biology: human, plant, and animal survival in the arctic. Oxford University Press, Oxford

    Google Scholar 

  • Duque A, Stevenson PR, Feeley KJ (2015) Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci 112:10744–10749

    Article  CAS  PubMed  Google Scholar 

  • Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2013) Telling a different story: a global assessment of bryophyte invasions. Biol Invasions 15:1933–1946

    Article  Google Scholar 

  • Essl F, Steinbauer K, Dullinger S, Mang T, Moser D (2014) Little, but increasing evidence of impacts of alien bryophytes. Biol Invasions 16:1175–1184

    Article  Google Scholar 

  • Evengard B, McMichael A (2011) Vulnerable populations in the Arctic. Glob Health Action 4:3–5

    PubMed  Google Scholar 

  • Fausch KD, Rieman BE, Dunham JB, Young MK, Peterson DP (2009) Invasion versus isolation: Trade-offs in managing native salmonids with barriers to upstream movement. Conserv Biol 23:859–870

  • Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  CAS  PubMed  Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Article  Google Scholar 

  • Hein CL, Öhlund G, Englund G (2014) Fish introductions reveal the temperature dependence of species interactions. Proc R Soc Ser B 281:1471–2954

    Google Scholar 

  • Hughes KA, Pertierra LR, Molina-Montenegro MA, Convey P (2015) Biological invasions in terrestrial Antarctica: what is the current status and can we respond? Biodivers Conserv 24:1031–1055

    Article  Google Scholar 

  • IUCN/SSC (2013). Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission, viiii + 57 pp

  • Jaenson TGT, Lindgren E (2011) The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tickborne Dis 2(1):44–49

    Article  Google Scholar 

  • Knapp RA, Briggs CJ, Smith TC, Maurer JR (2011) Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere 2:art93

  • Kruckenhauser L, Pinsker W (2008) Microsatellite variation in autochthonous and introduced populations of the Alpine marmot (Marmota marmota) along a European west–east transect. J Zool Syst Evol Res 42:19–26

    Article  Google Scholar 

  • Kueffer C (2015) Mountain biomes. Oxf Bibliogr Ecol. doi:10.1093/obo/9780199830060-0119

  • Kueffer C, McDougall K, Alexander J, Daehler C, Edwards PJ, Haider S, Milbau A, Parks C, Pauchard A, Reshi ZA, Rew L, Schroder M, Seipel T (2013) Plant invasions into mountain protected areas: assessment, prevention and control at multiple spatial scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant invasions in protected areas: patterns, problems and challenges. Springer, Dordrecht, pp 89–113

    Chapter  Google Scholar 

  • Kueffer C, Daehler C, Dietz H, McDougall K, Parks C, Pauchard A, Rew L (2014) The Mountain Invasion Research Network (MIREN). Linking local and global scales for addressing an ecological consequence of global change. GAIA 23:263–265

    Article  Google Scholar 

  • Lenoir J, Svenning JC (2013) Latitudinal and elevational range shifts under contemporary climate change. Encycl Biodivers 4:599–611

  • Lenoir J, Svenning JC (2015) Climate-related range shifts—towards a comprehensive research framework. Ecography 38:15–28

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dulinger S, Pauli H, Willner W, Svenning JC (2010) Going against the flow: potential mechanisms for the unexpected downward range shifts of some mountain plant species despite a warming climate. Ecography 33:295–303

  • Lenoir J, Virtanen R, Oksanen J, Oksanen L, Luoto M, Grytnes JA, Svenning JC (2012) Dispersal ability links to cross-scale species diversity patterns across the Eurasian Arctic tundra. Glob Ecol Biogeogr 21:851–860

    Article  Google Scholar 

  • Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267

    Article  PubMed  Google Scholar 

  • McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C (2011) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387

    Article  Google Scholar 

  • Montgomery RR, Murray KO (2015) Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 13:317–325

    Article  CAS  PubMed  Google Scholar 

  • Muths E, Pilliod DS, Livo LJ (2008) Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA. Biol Conserv 141:1484–1492

    Article  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8:e66832

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer MV, Stoffregen WC, Rogers DG, Hamir AN, Richt JA, Pedersen DD, Waters WR (2004) West Nile virus infection in reindeer (Rangifer tarandus). J Vet Diagn Invest 16(3):219–222

    Article  PubMed  Google Scholar 

  • Parkinson A, Koch A, Evengård B (2015) Infectious Disease in the Arctic: A Panorama in Transition. In: Evengård B, Nymand Larsen J, Paasche Ø (eds) The New Arctic. Springer International Publishing, Berlin, pp 239–257

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486

    Article  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evolut 2:1818–1825

    Article  Google Scholar 

  • Pellissier L, Roger A, Bilat J, Rasmann S (2014) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography 37:950–959

    Article  Google Scholar 

  • Petitpierre B, MacDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl. doi:10.1890/14-1871.1

  • Pettersson L, Boman J, Juto P, Evander M, Ahlm C (2008) Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis 14(5):808–810

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28:46–54

    Article  Google Scholar 

  • Rodriguez-Cabal MA, Stuble KL, Guenard B, Dunn RR, Sanders NJ (2012) Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biol Invasions 14:557–565

    Article  Google Scholar 

  • Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM et al (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108(220–225):3. doi:10.1073/pnas.1011723108

    Google Scholar 

  • Rozzi R, Armesto JJ, Goffinet B, Buck W, Massardo F, Silander J, Arroyo MT, Russell S, Anderson CB, Cavieres LA (2008) Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Front Ecol Environ 6:131–137

    Article  Google Scholar 

  • Ruiz GM, Hewitt CL (2009) Latitudinal patterns of biological invasions in marine ecosystems: a polar perspective. In: Krupnik I et al (eds) Smithsonian at the Poles. Contributions to International Polar Year Science. Smithsonian Inst. Press, Washington, pp 347–358

    Chapter  Google Scholar 

  • Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B, Lindblom A, Forsman M, Sjöstedt A, Johansson A (2012) Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis 205:297–304

    Article  PubMed Central  PubMed  Google Scholar 

  • Schock DM, Ruthig GR, Collins JP, Kutz SJ, Carrière S, Gau RJ, Veitch AM, Larter NC, Tate DP, Guthrie G (2010) Amphibian chytrid fungus and ranaviruses in the Northwest Territories, Canada. Dis Aquat Organ 92:231–240

  • Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Change Biol 13:288–299

    Article  Google Scholar 

  • Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci 107:9689–9694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob Change Biol 19:2082–2088

    Article  Google Scholar 

  • Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales LV, Wolf KM, Young DJ, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 22;7. doi: 10.1093/aobpla/plv056

Download references

Acknowledgments

The workshop was supported through funding by the Mountain Research Initiative (MRI) of the University of Bern (Switzerland), the Marcus Wallenberg Foundation for International Scientific Collaboration, the Oscar and Lili Lamms Remembrance Foundation, the Arctic Research Centre at Umeå University (ARCUM), and the Climate Impacts Research Centre (CIRC). AP is supported by CONICYT, Chile grant PFB-23 and the Ministry of Economy, Chile grant ICM P05-002. FE and WR acknowledge support from the Environment Agency Austria. AM, AP, JL and MN acknowledge support from the Swedish Research Council (VR 2012-6252). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This manuscript is US Geological Survey Amphibian Research and Monitoring Initiative product no. 534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal Pauchard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauchard, A., Milbau, A., Albihn, A. et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 18, 345–353 (2016). https://doi.org/10.1007/s10530-015-1025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1025-x

Keywords

Navigation