Skip to main content

Advertisement

Log in

Alien biomolecules: a new challenge for natural product chemists

Biological Invasions Aims and scope Submit manuscript

Abstract

Among natural products there are molecules well known to influence the abundance and distribution of marine organisms and to play important roles in their interactions with one another. Recently, chemical ecologists have also started to consider how research on natural products might be useful in understanding marine biological invasions, assessing their impact in the invaded areas, and considering how to deal with them. Their efforts especially focused on the Mediterranean Sea, which is one of the major hotspots of marine biological invasions on earth, showing in what way marine natural products (MNPs) may influence (1) the ability of exotic marine organisms to invade and to get established, (2) how they affect the invaded biota, and (3) public health and the economy. In all cases, the study of such chemical warfare between alien and native species started with the isolation of the pure chemicals required for chemical structure elucidation and subsequent biological testing, implying a central role of natural product chemistry in approaching critical issues in invasion biology. In this position paper we also introduce a theme of possible interest for managing marine invasive species, based on the exploitation of available chemical and biological information on MNPs. We show how a kind of chemical data originally gathered for other objectives—such as obtaining drugs from the sea—might also offer valid alternatives to unrealistic eradication campaigns, becoming the basis for a desirable commercial use of the bioactive compounds obtainable from marine pests, thus paving the way for making the control of invasions profitable. The pests might then be harvested, reducing their impact on marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal PK, Thakur RS, Bansal MC (1989) Flavonoids. In: Agrawal PK (ed) Carbon-13 NMR of flavonoids. Elsevier, Amsterdam, pp 95–182

    Chapter  Google Scholar 

  • Alarif WM, Elnaga ZSA, Ayyad SEN, Al-Lihaibi SS (2010) Insecticidal metabolites from the green algae Caulerpa racemosa. (2010). Clean Soil Air Water 38:548–557

    Article  CAS  Google Scholar 

  • Amico V, Oriente G, Piattelli M, Tringali C, Fattorusso E, Magno S, Mayol L (1978) Caulerpenyne, an unusual sequiterpenoid from the green alga Caulerpa prolifera. Tedrahedron Lett 38:3593–3596

    Article  Google Scholar 

  • Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK–N–SH and modifies the microtubule network. Life Sci 70:415–429

    Article  CAS  PubMed  Google Scholar 

  • Boo HJ, Hyun JH, Kim SC, Kang JI, Kim MK, Kim SY, Cho H, Yoo ES, Kang HK (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother Res 25:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Boo HJ, Hong JY, Kim SC, Kang JI, Kim MK, Kim EJ, Hyun JW, Koh YS, Yoo ES, Kwon JM, Kang HK (2013) The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 11:2982–2999

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunelli M, Garcia-Gil M, Mozzachiodi R, Roberto M, Scuri R, Traina G, Zaccardi ML (2000) Neurotoxic effects of caulerpenyne. Prog NeuroPsychopharmacol 24:939–954

    Article  CAS  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante-Silva LHA, de Carvalho Correia AC, Barbosa-Filho JM, da Silva BA, de Oliveira Santos BV, de Lira DP, Sousa JCF, de Miranda GE, de Andrade Cavalcante F, Alexandre-Moreira MS (2013) Spasmolytic effect of caulerpine involves blockade of Ca2 + influx on guinea pig ileum. Mar Drugs 11:1553–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavas L, Baskin Y, Yurdakoc K, Olgun N (2006) Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: C. racemosa var. cylindracea. J Exp Mar Biol Ecol 339:111–119

    Article  Google Scholar 

  • Cengiz S, Cavas L, Yurdakoc K (2010) Alpha-amylase inhibition kinetics by caulerpenyne. Medit Mar Sci 11:93–103

    Article  Google Scholar 

  • Cengiz S, Cavas L, Yurdakoc K, Pohnert G (2011) The sesquiterpene caulerpenyne from Caulerpa spp. is a lipoxygenase inhibitor. Mar Biotechnol 13:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cengiz S, Cavas L, Yurdakoc K, Aksu S (2012) Inhibition of xanthine oxidase by Caulerpenyne from Caulerpa prolifera. Turk J Biochem 37:445–451

    Article  CAS  Google Scholar 

  • Cha JK, Christ WJ, Finan JM, Fujioka H, Kishi Y, Klein LL, Ko SS, Leder J, McWhorter WW Jr, Pfaff K-P, Yonaga M, Uemura D, Hirata Y (1982) Stereochemistry of palytoxin. 4 complete structure. J Am Chem Soc 104:7369–7371

    Article  CAS  Google Scholar 

  • Chen JH, Lim JD, Sohn EH, Choi YS, Han ET (2009) Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitol Res 104:245–250

    Article  PubMed  Google Scholar 

  • Ciminiello P, Dell’Aversano C, Forino M, Tartaglione L (2014) Marine toxins in Italy: the more you look, the more you find. Eur J Org Chem 2014:1357–1369

  • Cimino G, Ghiselin MT (2001) Marine natural products chemistry as evolutionary narrative. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC, Boca Raton, pp 115–154

    Google Scholar 

  • Cimino G, Ghiselin MT (2009) Chemical defense and evolution of opisthobranch gastropods. Proc California Acad Sci 60:175–422

    Google Scholar 

  • Cimino G, Spinella A, Sodano G (1989) Naturally occurring prostaglandin-1,15-lactones. Tetrahedron Lett 30:3589–3592

    Article  CAS  Google Scholar 

  • Cimino G, Passeggio A, Sodano G, Spinella A, Villani G (1991) Alarm pheromones from the Mediterranean opisthobranch Haminoea navicula. Experientia 47:61–63

    Article  CAS  Google Scholar 

  • Commeiras L, Bourdron J, Douillard S, Barbier P, Vanthuyne N, Peyrot V, Parrain J-L (2006) Total synthesis of terpenoids isolated from caulerpale algae and their inhibition- of tubulin assembly. Synthesis 1:166–181

    Google Scholar 

  • Corticchiato M, Bernardini A, Costa J, Bayet C, Saunois A, Voirin B (1995) Free flavonoid aglycones from Thymus herba barona and its monoterpenoid chemotypes. Phytochemistry 40:115–120

    Article  CAS  Google Scholar 

  • Eisner T, Meinwald J (eds) (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington

    Google Scholar 

  • Enge S, Nylund GM, Harder T, Pavia H (2012) An exotic chemical weapon explains low herbivore damage in an invasive alga. Ecology 93:2736–2745

    Article  PubMed  Google Scholar 

  • Faimali M (2012) Le specie aliene alterano i “sapori del mare”. http://blog.rinnovabili.it/blu-lab/le-specie-aliene-alterano-i-sapori-del-mare/

  • Faulkner DJ, Ghiselin MT (1983) Chemical defence and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Article  Google Scholar 

  • Felline S, Caricato R, Cutignano A, Gorbi S, Lionetto MG, Mollo E, Regoli F, Terlizzi A (2012) Subtle effects of biological invasions: cellular and physiological responses of fish eating the exotic pest Caulerpa racemosa. PLoS One 7:e38763. doi:10.1371/journal.pone.0038763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felline S, Mollo E, Ferramosca A, Zara V, Regoli F, Gorbi S, Terlizzi A (2014) Can a marine pest reduce the nutritional value of Mediterranean fish flesh? Mar Biol 161:1275–1283

    Article  CAS  Google Scholar 

  • Galil BS, Marchini A, Occhipinti-Ambrogi A, Minchin D, Narščius A, Ojaveer H, Olenin S (2014) International arrivals: widespread bioinvasions in European Seas. Ethol Ecol Evol 26:152–171

    Article  PubMed Central  PubMed  Google Scholar 

  • Garson MJ (1993) The biosynthesis of marine natural products. Chem Rev 93:1699–1733

    Article  CAS  Google Scholar 

  • Gavagnin M, Carbone M, Amodeo P, Mollo E, Vitale RM, Roussis V, Cimino G (2007) Structure and absolute stereochemistry of syphonoside: a unique macrocyclic glycoterpenoid from marine organisms. J Org Chem 72:5625–5630

    Article  CAS  PubMed  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products. Chem Biol 19:85–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorbi S, Giuliani ME, Pittura L, d’Errico G, Terlizzi A, Felline S, Grauso L, Mollo E, Cutignano A, Regoli F (2014) Could molecular effects of Caulerpa racemosa metabolites modulate the impact on fish populations of Diplodus sargus? Mar Environ Res 96:2–11

    Article  CAS  PubMed  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what is known and what is next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8:109–116

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Lee J-B, Nakano T, Hayashi T (2013) Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect 15:302–309

    Article  CAS  PubMed  Google Scholar 

  • Higa T, Kuniyoshi M (2000) Toxins associated with medicinal and edible seaweeds. Toxin Rev 19:119–137

    Article  CAS  Google Scholar 

  • Kamal C, Sethuraman MG (2012) Caulerpin—a bis-indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemosa. Ind Eng Chem Res 51:10399–10407

    Article  CAS  Google Scholar 

  • Kang KS, Kim ID, Kwon RH, Ha BA (2008) Undaria pinnatifida fucoidan extract protects against CCl4-induced oxidative stress. Biotechnol Bioproc E 13:168–173

    Article  CAS  Google Scholar 

  • Kim KJ, Lee BY (2012) Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr Res 32:439–447

    Article  CAS  PubMed  Google Scholar 

  • Kim WJ, Koo YK, Jung MK, Moon HR, Kim SM, Synytsya A, Yun-Choi HS, Kim YS, Park JK, Park YI (2010) Anticoagulating activities of low-molecular weight fuco-oligosaccharides prepared by enzymatic digestion of fucoidan from the sporophyll of Korean Undaria pinnatifida. Arch Pharm Res 33:125–131

    Article  CAS  PubMed  Google Scholar 

  • Lemée R, Pesando D, Issanchou C, Amade P (1997) Microalgae: a model to investigate the ecotoxicology of the green alga Caulerpa taxifolia from the Mediterranean Sea. Mar Environ Res Lond 44:13–25

    Article  Google Scholar 

  • Lipkin Y (1975) On the male flower of Halophila stipulacea. Israel J Bot 24:198–200

    Google Scholar 

  • Liu Y, Morgan JB, Veena CK, Liu R, Jekabsons M, Mahdi F, Nagle DG, Zhou Y-D (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Wang J, Chang AK, Liu B, Yang L, Li Q, Wang P, Zou X (2012) Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine 19:797–803

    Article  CAS  PubMed  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York, p 354

    Book  Google Scholar 

  • Macedo NRPV, Ribeiro MS, Villaca RC, Ferreira W, Pinto AM, Teixeira VL, Cirne-Santos C, Paixao ICNP, Giongo V (2012) Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Braz J Pharmacogn 22:861–867

    Article  CAS  Google Scholar 

  • Mahendran M, Somasundaram S, Thomson RH (1979) A revised structure for caulerpicin from Caulerpa racemosa. Phytochemistry 18:1885

    Article  CAS  Google Scholar 

  • Maiti BC, Thomson RH, Mahendran M (1978) The structure of caulerpin, a pigment from Caulerpa algae. J Chem Res 4:126–127

  • Mak W, Hamid N, Liu T, Lu J, White WL (2013) Fucoidan from New Zealand Undaria pinnatifida: monthly variations and determination of antioxidant activities. Carbohydr Polym 95:606–614

    Article  CAS  PubMed  Google Scholar 

  • Mao SC, Guo YW, Shen X (2006) Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg Med Chem Lett 16:2947–2950

    Article  CAS  PubMed  Google Scholar 

  • Marin A, Di Marzo V, Cimino G (1991) A histological and chemical study of the cerata of the opisthobranch mollusc Tethys fimbria. Mar Biol 111:353–358

    Article  CAS  Google Scholar 

  • Marin A, Alvarez LA, Cinimo G, Spinella A (1999) Chemical defence in cephalaspidean gastropods: origin anatomical location and ecological roles. J Moll Stud 65:121–131

    Article  Google Scholar 

  • Maruyama H, Tamauchi H, Hashimoto M, Nakano T (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo 17:245–249

    CAS  PubMed  Google Scholar 

  • Maruyama H, Tamauchi H, Hashimoto M, Nakano T (2005) Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. Int Arch Allergy Immunol 137:289–294

    Article  CAS  PubMed  Google Scholar 

  • McClintock JB, Baker JB (eds) (2001) Marine chemical ecology. CRC Press, Boca Raton

    Google Scholar 

  • McConnel OP, Hughes PA, Targett NM, Daley J (1982) Effects of secondary metabolites from marine algae on feeding by the sea urchin, Lytechninus variegatus. J Chem Ecol 8:1437–1453

    Article  Google Scholar 

  • Meinwald J, Eisner T (2008) Chemical ecology in retrospect and prospect. Proc Natl Acad Sci USA 105:4539–4540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min S-K, Kwon O-C, Lee S, Park K-H, Kim J-K (2012) An antithrombotic fucoidan, unlike heparin, does not prolong bleeding time in a murine arterial thrombosis model: a comparative study of Undaria pinnatifida sporophylls and Fucus vesiculosus. Phytother Res 26:752–757

    Article  CAS  PubMed  Google Scholar 

  • Mollo E, Gavagnin M, Carbone M, Castelluccio F, Pozone F, Roussis V, Templado J, Ghiselin MT, Cimino G (2008) Factors promoting marine invasions: a chemoecological approach. Proc Natl Acad Sci USA 105:4582–4586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mollo E, Fontana A, Polese G, Roussis V, Amodeo P, Ghiselin MT (2014) Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front Chem 2:92. doi:10.3389/fchem.2014.00092

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore RE, Scheuer PJ (1971) Palytoxin—new marine toxin from a coelenterate. Science 172(3982):495–498

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PG, Carlé JS, Christophersen C (1982) Final structure of caulerpicin, a toxin mixture from thegreen alga Caulerpa racemosa. Phytochemistry 21:1643–1645

    Article  CAS  Google Scholar 

  • Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169

    Article  CAS  Google Scholar 

  • Paul VJ, Fenical W (1987) Natural products chemistry and chemical defence in tropical marine algae of the phylum Chlorophyta. In: Scheuer PJ (ed) Bioorganic marine chemistry. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  • Pesando D, Lemée R, Ferrua C, Amade P, Girard JP (1996) Effects of caulerpenyne, the major toxin from Caulerpa taxifolia on mechanisms related to sea urchin egg cleavage. Aquat Toxicol 35:139–155

    Article  CAS  Google Scholar 

  • Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204

    Article  PubMed  Google Scholar 

  • Rabe B, Steenkam JA, Joubert E, Burger JFW, Ferreira D (1994) Phenolic metabolites from rooibos tea (Aspalathus linearis). Phytochemistry 34:1559–1565

    Article  Google Scholar 

  • Raniello R, Mollo E, Lorenti M, Gavagnin M, Buia MC (2007) Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol Invasions 9:361–368

    Article  Google Scholar 

  • Raub MF et al (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochemistry 26:619–620

    Article  CAS  Google Scholar 

  • Rilov G, Galil B (2009) Marine bioinvasions in the Mediterranean Sea—history, distribution and ecology. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems, vol 204. Springer, Berlin, pp 549–575

    Chapter  Google Scholar 

  • Schröder HC, Badria FA, Ayyad SN, Batel R, Wiens M, Hassanein HM, Kurelec B, Müller WE (1998) Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ Toxicol Phar 5:119–126

    Article  Google Scholar 

  • Schwede JG (1986) Process for promoting and regulating plant growth with caulerpin. United States Patent 04608077

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Sorensen PW, Fine JM, Dvornikovs V, Jeffrey CS, Shao F, Wang J, Vrieze LA, Anderson KR, Hoye TR (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328

    Article  CAS  PubMed  Google Scholar 

  • Souza ET, Lira DP, Queiroz AC, Silva DJC, Aquino AB, Mella EAC, Lorenzo VL, de Miranda GEC, Araújo-Júnior JX, Chaves MCO, Barbosa-Filho JM, Athayde-Filho PF, de Oliveira Santos BV, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpine, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    Article  PubMed Central  PubMed  Google Scholar 

  • Spinella A, Alvarez LA, Passeggio A, Cimino G (1993) New 3-alkylpyridines from three Mediterranean cephalaspidean mollusks : structure, ecological role and taxonomic relevance. Tetrahedron 49:1307–1314

    Article  CAS  Google Scholar 

  • Spinella A, Alvarez LA, Cimino G (1998) Alkylphenols from the cephalaspidean mollusc Haminoea callidegenita. Tetrahedron Lett 39:2005–2008

    Article  CAS  Google Scholar 

  • Svensson JR, Nylund GM, Cervin G, Toth GB, Pavia H (2013) Novel chemical weapon of an exotic macroalga inhibits recruitment of native competitors in the invaded range. J Ecol 101:140–148

    Article  CAS  Google Scholar 

  • Synytsya A, Kim WJ, Kim SM, Pohl R, Synytsya A, Kvasnicka F et al (2010) Structure and antitumor activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81:41–48

    Article  CAS  Google Scholar 

  • Synytsya A, Bleha R, Synytsya A, Pohl R, Hayashi K, Yoshinaga K, Nakano T, Hayashi T (2014) Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr Polym 111:633–644

    Article  CAS  PubMed  Google Scholar 

  • Terlizzi A, Felline S, Lionetto MG, Caricato R, Perfetti V, Cutignano A, Mollo E (2011) Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus. Aquat Biol 12:109–117

    Article  Google Scholar 

  • Vishchuk OS, Ermakova SP, Zvyagintseva TN (2011) Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res 346:2769–2776

    Article  CAS  PubMed  Google Scholar 

  • Vottero E, Balgi A, Woods K, Tugendreich S, Melese T, Andersen RJ, Mauk AG, Roberge M (2006) Inhibitors of human indoleamine 2,3-dioxygenase identified with a target-based screen in yeast. Biotechnol J 1:282–288

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu Z, Liu X, Teng H, Zhang C, Hou L, Zou X (2014) Anti-metastasis effect of fucoidan from Undaria pinnatifida Sporophylls in mouse hepatocarcinoma Hca-F cells. PLoS One 9(8):e106071

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang L, Wang P, Wang H, Li Q, Teng H, Liu Z, Yang W, Hou L, Zou X (2013) Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 11:1961–1976

    Article  PubMed Central  PubMed  Google Scholar 

  • You SG, Yang C, Lee HY, Lee BY (2010) Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria Pinnatifida and their in vitro anticancer activity. Food Chem 119:554–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The publication of this paper is supported by CONISMA, the Italian National Interuniversity Consortium for Marine Sciences, which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) for the project VECTORS (http://www.marine-vectors.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Mollo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollo, E., Cimino, G. & Ghiselin, M.T. Alien biomolecules: a new challenge for natural product chemists. Biol Invasions 17, 941–950 (2015). https://doi.org/10.1007/s10530-014-0835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0835-6

Keywords

Navigation