Skip to main content

Advertisement

Log in

Areas of high conservation value in Georgia: present and future threats by invasive alien plants

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Georgia is known for its extraordinary rich biodiversity of plants, which may now be threatened due to the spread of invasive alien plants (IAP). We aimed to identify (1) the most prominent IAP out of 9 selected potentially invasive and harmful IAP by predicting their distribution under current and future climate conditions in Georgia as well as in its 43 Protected Areas, as a proxy for areas of high conservation value and (2) the Protected Areas most at risk due to these IAP. We used species distribution models based on 6 climate variables and then filtered the obtained distributions based on maps of soil and vegetation types, and on recorded occurrences, resulting into the predicted ecological distribution of the 9 IAP’sat a resolution of 1 km2. Our habitat suitability analysis showed that Ambrosia artemisiifolia, (24 and 40 %) Robinia pseudoacaia (14 and 19 %) and Ailanthus altissima (9 and 11 %) have the largest potential distribution (predicted % area covered), with A. altissima the potentially most increasing one over the next 50 years (from 9 to 13 % and from 11 to 25 %), for Georgia and the Protected Areas, respectively. Furthermore, our results indicate two areas in Georgia that are under specifically high threat, i.e. the area around Tbilisi and an area in the western part of Georgia (Adjara), both at lower altitudes. Our procedure to identify areas of high conservation value most at risk by IAP has been applied for the first time. It will help national authorities in prioritizing their measures to protect Georgia’s outstanding biodiversity from the negative impact of IAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci 108:656–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allouche O, Tsoar A, Kadmon RO (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Anonymous (2009) Agency of Protected Areas Georgia. Ministry of Environmental Protection and Natural Resources of Georgia. www.apa.gov.ge

  • Anonymous (2012) Conservation international. www.conservation.org

  • Anonymous (2012) ELAW, Environmental law alliance worldwide. www.elaw.org/node/1327

  • Anonymous (2012) IUCN, International union for conservation of nature. www.iucn.org

  • Anonymous (2012) WorldClim global climate data. www.worldclim.org

  • Anonymous (2012) WWF, world wildlife found. www.panda.org

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Chang Biol 14:529–538

    Google Scholar 

  • Bartlein PJ, Prentice IC, Webb T (1986) Climatic response surfaces from pollen data for some eastern North American taxa. J Biogeogr 13:35–57

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Townsend Peterson A, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modelling. Ecol Model 11:1810–1819

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Neuhäuslová Z, Raus TH, Schlüter H, Weber H (2004) Karte der natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe, Maßstab/Scale 1:2.500.000, Interaktive/Interactive CD-ROM- Erläuterungstext, Legende, Karten/Explanatory Text, Legend, Maps. Landwirtschaftsverlag, Münster

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded range matters. Biol Lett 4:585–589

    Article  PubMed Central  PubMed  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306

    Article  Google Scholar 

  • Cacho O, Hester S, Spring D (2007) Applying search theory to determine the feasibility of eradicating an invasive population in natural environments. Aust J Agric Resour Econ 51:425–443

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Cousins MM, Briggs J, Gresham C, Whetstone J, Whitwell T (2010) Beach Vitex (Vitex rotundifolia): an invasive costal species. Invasive Plant Species Manag 3:340–345

    Article  Google Scholar 

  • Dirnbock T, Greimler J, Lopez P, Stuessy TF (2003) Predicting future threats to the native vegetation of Robinson Crusoe Island, Juan Fernandez Archipelago, Chile. Conserv Biol 17:1650–1659

    Article  Google Scholar 

  • Dudley N (ed.) (2008) Guidelines for applying protected area management categories. Gland, Switzerland: IUCN. x + 86 pp. ISBN: 978-2-8317-1086-0

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541

    Article  PubMed  Google Scholar 

  • EPPO, European and Mediterranean Plant protection Organisation (2014) www.eppo.int

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Guisan A, Rahbek C (2011) SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38:1433–1444

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418

    Article  CAS  PubMed  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152

    Article  Google Scholar 

  • IPCC Climate Change (2007) The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge

    Google Scholar 

  • Kikodze A, Gokhelashvili R (eds.) (2007) Protected Areas of Georgia. Tbilisi. Report for the Swiss federal Office of the Environment, p. 37

  • Kikodze D, Memiadze N, Kharazishvili D, Manvelidze Z, Müller-Schärer H (2010) The alien flora of Georgia

  • Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493

    Article  PubMed  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, Washington, p 392

    Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2012) Global biodiversity conservation? The critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots distribution and protection of conservation priority areas. Springer, Berlin, Heidelberg, pp 3–22

    Google Scholar 

  • Müller-Schärer H, Collins AR (2012) Integrated weed management. In: Jorgensen SE (ed) Encyclopedia of environmental management. Taylor and Francis, New York

    Google Scholar 

  • Nogues-Bravo D, Rahbek C (2011) Communities under climate change. Science 334:1070–1071

    Article  CAS  PubMed  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Billeter R, Cavieres L, Guisan A, Haider S, Jakobs G, Mack RN, McDougall K, Millar C, Naylor BJ, Parks C, Poll M, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching high elevations. Front Ecol Environ 7:479–486

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Andersonb RP, Schapire RP (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18:1725–1737

    Article  PubMed Central  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing, 3-900051-07-0R

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6(2):93–107

    Article  Google Scholar 

  • Richter R, Berger UE, Dullinger S, Essl F, Leitner M, Smith M, Vogl G (2013) Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J Appl Ecol 50(6):1422–1430

    Article  Google Scholar 

  • Rodriguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251

    Article  Google Scholar 

  • Seipel T, Kueffer C, Rew L, Daehler C, Pauchard A, Naylor B, Alexander JM, Edwards PJ, Parks CG, Arevalo J, Cavieres L, Dietz H, Jakobs G, McDougall K, Otto R, Walsh N (2012) Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob Ecol Biogeogr 21:236–246

    Article  Google Scholar 

  • Sun Y, Collins AR, Schaffner U, Müller-Schärer H (2013) Dissecting impact of plant invaders: do invaders behave differently in the new range? Ecology 94:2124–2130

    Article  PubMed  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250

    Article  Google Scholar 

  • ThuillerW Lafourcade B, Engler R, Araújo B (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Vicente J, Randin CF, Goncalves J, Metzger MJ, Lomba A, Honrado J, Guisan A (2011) Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach. Biol Invasions 13:1209–1227

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge Grigol Deisadze and Sandro Kolbai for help with field work, Giorgi Mikeladze for supplying the excellent environmental data for the filters and Dr. Shalva Sikharulidze and Maia Tavartkiladze for hosting us during our research stay at the Tbilisi Botanical Garden. We also thank Info Flora for providing the occurrence data of the nine study species in Switzerland and two anonymous reviewers for the helpful and constructive comments on an earlier version of this manuscript. The study was financially supported by a travel grant for botanical, zoological and earth sciences studies from the Swiss Academy of Science, sc.nat + to DT, and by the NCCR Plant Survival, a research program of the Swiss National Science Foundation, to HMS and OB for travelling to Georgia in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Julia Klara Thalmann.

Additional information

Olivier Broennimann and Heinz Müller-Schärer are joint senior authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thalmann, D.J.K., Kikodze, D., Khutsishvili, M. et al. Areas of high conservation value in Georgia: present and future threats by invasive alien plants. Biol Invasions 17, 1041–1054 (2015). https://doi.org/10.1007/s10530-014-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0774-2

Keywords

Navigation