Skip to main content
Log in

Microtopography promotes coexistence of an invasive seagrass and its native congener

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Environmental heterogeneity can promote coexistence, and is therefore predicted to increase invasibility of communities, but decrease invasion impacts. We examined the role of local-scale environmental heterogeneity in promoting the coexistence of the invasive seagrass, Zostera japonica, and its native congener Zostera marina in a patch mosaic. In its introduced range, Z. japonica often co-occurs with the native Z. marina in a patch mosaic associated with intertidal microtopography (centimeter to decimeter relief over meter to decameter distances). Here, Z. marina inhabits depressions that retain water during low tides, and Z. japonica inhabits well-drained mounds. Transplant experiments revealed that Z. marina suppressed Z. japonica shoot densities, more so in pools than on mounds. Z. marina suppressed Z. japonica above-ground and below-ground biomass by 47 and 19 % respectively, on mounds, and by over 60 % in pools. Z. marina shoot densities and biomass were 40 and 95 % lower, respectively, on mounds, regardless of Z. japonica presence. Topographic context remained the most influential predictor of Z. marina responses, even when we transplanted Z. marina into higher densities of Z. japonica. These results indicate that the native Z. marina is physiologically restricted from mounds and competitively excludes the introduced Z. japonica from pools. We provide empirical evidence of local-scale heterogeneity promoting coexistence of an invasive and a native macrophyte, supporting the hypothesis that environmental heterogeneity increases invasibility and decreases invasion impacts. Furthermore, active control of the invader in mixed beds is unlikely to benefit the native.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122. doi:10.1046/j.1461-0248.2003.00530.x

    Article  Google Scholar 

  • Bando KJ (2006) The roles of competition and disturbance in a marine invasion. Biol Invasions 8:755–763. doi:10.1007/s10530-005-3543-4

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-6. http://CRAN.R-project.org/package=lme4

  • Berry H, Sewell AT, Wyllie-Echeverria S et al. (2003) Puget Sound submerged vegetation monitoring project: 2000–2002 monitoring report. Washington Department of Natural Resources, Olympia, WA

  • Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989

    Article  Google Scholar 

  • Boese BL, Robbins BD, Thursby G (2005) Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary. Bot Mar 48:274–283. doi:10.1515/BOT.2005.037

    Article  Google Scholar 

  • Boese BL, Clinton PJ, Dennis D et al (2008) Digital image analysis of Zostera marina leaf injury. Aquat Bot 88:87–90. doi:10.1016/j.aquabot.2007.08.016

    Article  Google Scholar 

  • Boese BL, Kaldy JE, Clinton PJ et al (2009) Recolonization of intertidal Zostera marina L. (eelgrass) following experimental shoot removal. J Exp Mar Biol Ecol 374:69–77. doi:10.1016/j.jembe.2009.04.011

    Article  Google Scholar 

  • Bos AR, Bouma TJ, de Kort G, van Katwijk MM (2007) Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar Coast Shelf Sci 74:344–348

    Article  Google Scholar 

  • Byers JE (2002) Physical habitat attribute mediates biotic resistance to non-indigenous species invasion. Oecologia 130(1):146–156. doi:10.1007/s004420100777

    Article  Google Scholar 

  • Byers JE, Reichard S, Randall JM et al (2002) Directing research to reduce the impacts of nonindigenous species. Conserv Biol 16:630–640. doi:10.1046/j.1523-1739.2002.01057.x

    Article  Google Scholar 

  • Clark K, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, Plymouth

  • Connell J (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3:169–192

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 11:1119–1144

    Article  Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Elston DAA, Moss R, Boulinier T et al (2001) Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology. doi:10.1017/S0031182001007740

    PubMed  Google Scholar 

  • Gacia E, Granata T, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65:255–268

    Article  Google Scholar 

  • Gambi MC, Nowell AR, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61:159–169

    Article  Google Scholar 

  • Gerhardt F, Collinge SK (2007) Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients. Ecol Appl 17:922–933

    Article  PubMed  Google Scholar 

  • Gibson DJ (1988) The maintenance of plant and soil heterogeneity in dune grassland. J Ecol 76:497–508

    Article  Google Scholar 

  • Harper JL, Williams JT, Sagar GR (1965) The behaviour of seeds in soil: I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J Ecol 53:273–286

    Article  Google Scholar 

  • Harrison PG (1979) Reproductive strategies in intertidal populations of 2 co-occurring seagrasses (Zostera spp.). Can J Bot 57:2635–2638

    Article  Google Scholar 

  • Harrison PG (1982) Comparative growth of Zostera japonica Aschers and Graebn and Zostera marina L. under simulated inter-tidal and subtidal conditions. Aquat Bot 14:373–379

    Article  Google Scholar 

  • Harrison PG (1987) Natural expansion and experimental manipulation of seagrass (Zostera spp.) abundance and the response of infaunal invertebrates. Estuar Coast Shelf Sci 24:799–812. doi:10.1016/0272-7714(87)90153-3

    Article  Google Scholar 

  • Helmuth BS, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384

    Article  CAS  PubMed  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337. doi:10.1046/j.1523-1739.1992.06030324.x

    Article  Google Scholar 

  • Holway DA, Suarez AV, Case TJ (2002) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619

    Article  Google Scholar 

  • Jackson AC (2010) Effects of topography on the environment. J Mar Biol Assoc UK 90:169. doi:10.1017/S0025315409991123

    Article  Google Scholar 

  • Kaldy JE (2006) Production ecology of the non-indigenous seagrass, dwarf eelgrass (Zostera japonica Ascher. & Graeb.), in a Pacific Northwest Estuary, USA. Hydrobiologia 553:201–217

    Article  Google Scholar 

  • Krassoi FR, Brown KR, Bishop MJ et al (2008) Condition-specific competition allows coexistence of competitively superior exotic oysters with native oysters. J Anim Ecol 77:5–15. doi:10.1111/j.1365-2656.2007.01316.x

    Article  PubMed  Google Scholar 

  • Leuschner C, Rees U (1993) CO2 gas exchange of two intertidal seagrass species, Zostera marina L. and Zostera noltii Hornem., during emersion. Aquat Bot 45:53–62. doi:10.1016/0304-3770(93)90052-X

    Article  Google Scholar 

  • Marbà N, Holmer M, Gacia E, Barrón C (2006) Seagrass beds and coastal biogeochemistry. In: Larkum A, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology, and conservation, 1st edn. Springer, Dordrecht, pp 135–157

    Google Scholar 

  • Melbourne BA, Cornell HV, Davies KF et al (2006) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi:10.1111/j.1461-0248.2006.00987.x

    Article  Google Scholar 

  • Nomme KM, Harrison PG (1991) A multivariate comparison of the seagrasses Zostera marina and Zostera japonica in monospecific versus mixed populations. Can J Bot 69:1984–1990

    Article  Google Scholar 

  • Park J-I, Lee K-S (2007) Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar Pollut Bull 54:1238–1248. doi:10.1016/j.marpolbul.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  • Park SR, Kim YK, Kim J-H et al (2011) Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J Exp Mar Biol Ecol 407:275–283. doi:10.1016/j.jembe.2011.06.023

    Article  Google Scholar 

  • Perez-Llorens JL, Niell FX (1993) Temperature and emergence effects on the net photosynthesis of two Zostera noltii Hornem. morphotypes. Hydrobiologia 254:53–64. doi:10.1007/BF00007765

    Article  CAS  Google Scholar 

  • Posey M (1988) Community changes associated with the spread of an introduced seagrass, Zostera japonica. Ecology 69:974–983

    Article  Google Scholar 

  • Powell GVN, Schaffner FC (1991) Water trapping by seagrasses occupying bank habitats in Florida Bay. Estuar Coast Shelf Sci 32:43–60. doi:10.1016/0272-7714(91)90027-9

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Found Stat Comput. Vienna, Austria

  • Robertson GP, Crum JR, Ellis BG (1993) The spatial variability of soil resources following long-term disturbance. Oecologia 96:451–456

    Article  Google Scholar 

  • Ruesink JL, Hong J-S, Wisehart L et al (2010) Congener comparison of native (Zostera marina) and introduced (Z. japonica) eelgrass at multiple scales within a Pacific Northwest estuary. Biol Invasions 12:1773–1789. doi:10.1007/s10530-009-9588-z

    Article  Google Scholar 

  • Shafer DJ (2007) Physiological factors affecting the distribution of the nonindigenous seagrass Zostera japonica along the Pacific coast of North America. Dissertation, University of South Alabama

  • Shafer DJ, Kaldy JE (2014) Comparison of photosynthetic characteristics of the seagrass congeners Zostera marina L. and Zostera japonica Ascher. & Graeb. Aquat Bot 112:91–97

    Article  Google Scholar 

  • Shafer DJ, Sherman TD, Wyllie-Echeverria S (2007) Do desiccation tolerances control the vertical distribution of intertidal seagrasses? Aquat Bot 87:161–166. doi:10.1016/j.aquabot.2007.04.003

    Article  Google Scholar 

  • Shafer DJ, Kaldy JE, Gaeckle JL (2014) Science and management of the introduced seagrass Zostera japonica in North America. Environ Manag 53(1):147–162. doi:10.1007/s00267-013-0172-z

    Article  Google Scholar 

  • Silva J, Santos R, Calleja ML, Duarte CM (2005) Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. J Exp Mar Biol Ecol 317:87–95. doi:10.1016/j.jembe.2004.11.010

    Article  Google Scholar 

  • Stribling JM, Glahn OA, Chen XM, Cornwell JC (2006) Microtopographic variability in plant distribution and biogeochemistry in a brackish-marsh system. Mar Ecol Prog Ser 320:121–129

    Article  CAS  Google Scholar 

  • Takada Y (1999) Influence of shade and number of boulder layers on mobile organisms on a warm temperate boulder shore. Mar Ecol Prog Ser 189:171–179

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. doi:10.1111/j.1469-8137.2007.02207.x

    Article  PubMed  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD et al (2011) A framework to study the context-dependent impacts of marine invasions. J Exp Mar Biol Ecol 400:322–327. doi:10.1016/j.jembe.2011.02.033

    Article  Google Scholar 

  • Tsai C, Yang S, Trimble AC, Ruesink JL (2010) Interactions between two introduced species: Zostera japonica (dwarf eelgrass) facilitates itself and reduces condition of Ruditapes philippinarum (Manila clam) on intertidal flats. Mar Biol 157:1929–1936. doi:10.1007/s00227-010-1462-0

    Article  Google Scholar 

  • van der Heide T, Bouma TJ, van Nes EH et al (2010) Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91:362–369

    Article  PubMed  Google Scholar 

  • van der Heide T, Eklöf JS, van Nes EH et al (2012) Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape. PLoS One 7:e42060. doi:10.1371/journal.pone.0042060

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitford WG, Kay FR (1999) Biopedturbation by mammals in deserts: a review. J Arid Environ 41:203–230

    Article  Google Scholar 

  • Wundram D, Pape R, Löffler J (2010) Alpine soil temperature variability at multiple scales. Arct Antarct Alp Res 42:117–128. doi:10.1657/1938-4246-42.1.117

    Article  Google Scholar 

  • Zieman JC, National Coastal Ecosystems Team (U.S.), Management USBOL (1982) The ecology of the seagrasses of south Florida: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC

  • Zuur AF, Ieno EN, Walker NJ et al. (2009) Mixed effects models and extensions in ecology with R, 1st edn. pp 1–579. doi: 10.1007/978-0-387-87458-6

Download references

Acknowledgments

We thank S. Bracken, L. Colasurdo, A. Kazakova, J. Kirsch, J. Richardson, B. Sullivan, and R. Takesue for assistance in the field and lab. The Washington Department of Natural Resources and L. M. Moskal provided equipment that were crucial to carrying out the field studies. This manuscript benefitted from helpful reviews by J. Ruesink, P. Dowty, E. Grason, R. Elahi, A. Hart, M. Horwith, T. van der Heide, A. David, W. Matsubu, P. Goertler, F. Short and four anonymous reviewers. This research was conducted in the National Estuarine Research Reserve System under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Hannam.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannam, M.P., Wyllie-Echeverria, S. Microtopography promotes coexistence of an invasive seagrass and its native congener. Biol Invasions 17, 381–395 (2015). https://doi.org/10.1007/s10530-014-0736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0736-8

Keywords

Navigation