, Volume 11, Issue 10, pp 2251-2264,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 25 Dec 2008

Evolution of enhanced reproduction in the hybrid-derived invasive, California wild radish (Raphanus sativus)

Abstract

Evolution is receiving increased attention as a potentially important factor in invasions. For example, hybridization may have stimulated the evolution of invasiveness in several well-known plant pests. However, the mechanism for success of such hybrid-derived lineages remains unknown in the majority of the cases studied. Here we ask whether increased reproductive success (in terms of maternal fitness) has evolved in an invasive lineage with confirmed hybrid ancestry. We compare the relative fitness of the non-native, hybrid-derived California wild radish (Raphanus sativus) to that of its two progenitor species in field experiments at different sites and in different years. We found that California wild radish has high survivorship and produces more fruits per plant and more seeds per plant than either of its progenitors in several environments. Furthermore, populations of California wild radish display a strong genotype-by-environment interaction, indicating that maintenance of genetic and phenotypic diversity between populations may be responsible for the weed’s ability to invade a wide breadth of California habitats. Our results suggest that hybridization may contribute the evolution of enhanced invasiveness and, also, that by limiting the introduction and subsequent hybridization of congeners, we may be able to prevent the evolution of new invasive lineages.