, Volume 47, Issue 11-12, pp 892-910
Date: 31 Oct 2009

Necessity of Quantum Coherence to Account for the Spectrum of Time-Dependent Mutations Exhibited by Bacteriophage T4

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Transcriptase measurements of quantum expectations due to time-dependent coherent states populating informational DNA base-pair sites, designated by G–C → *G–*C, G–C → G′–C′, and A–T → *A–*T, provide a model for transcription and replication of time-dependent DNA lesions exhibited by bacteriophage T4. Coherent states are introduced as consequences of hydrogen bond arrangement, keto-amino → enol-imine, where product protons are shared between two sets of indistinguishable electron lone-pairs and thus participate in coupled quantum oscillations at frequencies of ~1013 s−1. The transcriptase deciphers and executes genetic specificity instructions by implementing measurements on superposition proton states at *G–*C, G′–C′, and *A–*T sites in an interval Δt ≪ 10−13 s. Decohered states participate in Topal–Fresco replication, which introduces substitutions *C → T, *G → A, G′ → T, and G′ → C, but superposition *A–*T states are deleted. These results imply an evolutionary shift favoring A–T richness.