Skip to main content

Advertisement

Log in

Ageing, adipose tissue, fatty acids and inflammation

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasen G, Fagertun H, Tonstad S, Halse J (2009) Leg fat mass as measured by dual X-ray absorptiometry (DXA) impacts insulin resistance differently in obese women versus men. Scand J Clin Lab Investig 69:181–189. doi:10.1080/00365510802464641

    Google Scholar 

  • Adams JM, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    CAS  PubMed  Google Scholar 

  • Amati F et al (2011) Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance another paradox in endurance-trained athletes? Diabetes 60:2588–2597. doi:10.2337/db10-1221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderwald C et al (2002) Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes 51:3025–3032

    CAS  PubMed  Google Scholar 

  • Assmann A, Mohlig M, Osterhoff M, Pfeiffer AFH, Spranger J (2008) Fatty acids differentially modify the expression of urokinase type plasminogen activator receptor in monocytes. Biochem Biophys Res Commun 376:196–199. doi:10.1016/j.bbrc.2008.08.115

    CAS  PubMed  Google Scholar 

  • Bartlett DB et al (2012) The age-related increase in low-grade systemic inflammation (Inflammaging) is not driven by cytomegalovirus infection. Aging Cell 11:912–915. doi:10.1111/j.1474-9726.2012.00849.x

    CAS  PubMed  Google Scholar 

  • Bastie CC, Hajri T, Drover VA, Grimaldi PA, Abumrad NA (2004) CD36 in myocytes channels fatty acids to a lipase-accessible triglyceride pool that is related to cell lipid and insulin responsiveness. Diabetes 53:2209–2216

    CAS  PubMed  Google Scholar 

  • Bays HE et al (2008) Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 6:343–368. doi:10.1586/14779072.6.3.343

    CAS  PubMed  Google Scholar 

  • Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the dionysos nutrition and liver study. Hepatology 42:44–52

    PubMed  Google Scholar 

  • Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C (2006) The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population Bmc. Gastroenterology 6:33. doi:10.1186/1471-230x-6-33

    PubMed Central  PubMed  Google Scholar 

  • Berneburg M (2010) Research in practice: more than skin deep -aging of subcutaneous fat tissue. J der Deutschen Dermatologischen Gesellschaft = J German Soc Dermatol: JDDG 8:776–778. doi:10.1111/j.1610-0387.2010.07480.x

    Google Scholar 

  • Bethel M, Chitteti BR, Srour EF, Kacena MA (2013) The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis. Curr Osteoporos Rep 11:99–106. doi:10.1007/s11914-013-0135-6

    PubMed Central  PubMed  Google Scholar 

  • Bjorntorp P (1990) Portal adipose-tissue as a generator of risk-factors for cardiovascular-disease and diabetes. Arteriosclerosis 10:493–496

    CAS  PubMed  Google Scholar 

  • Bonen A et al (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. Faseb J 18:1144–1146

  • Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJF, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol-Endocrinol Metab 291:E99–E107. doi:10.1152/ajpendo.00587.2005

    CAS  PubMed  Google Scholar 

  • Cartwright MJ, Tchkonia T, Kirkland JL (2007) Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 42:463–471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2Cl2 myotubes. Arch Biochem Biophys 419:101–109. doi:10.1016/j.abb.2003.08.020

    CAS  PubMed  Google Scholar 

  • Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15:585–594. doi:10.1016/j.cmet.2012.04.002

    CAS  PubMed  Google Scholar 

  • Cinti S et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355. doi:10.1194/jlr.M500294-JLR200

    CAS  PubMed  Google Scholar 

  • Claycombe KJ, Wu DY, Nikolova-Karakashian M, Palmer H, Beharka A, Paulson KE, Meydani SN (2002) Ceramide mediates age-associated increase in macrophage cyclooxygenase-2 expression. J Biol Chem 277:30784–30791. doi:10.1074/jbc.M204463200

    CAS  PubMed  Google Scholar 

  • Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FGS, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type i but not type ii myocytes concomitant with higher ceramide content. Diabetes 59:80–88. doi:10.2337/db09-0988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coen PM et al (2013) Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity (Silver Spring, Md). doi:10.1002/oby.20381

  • Cree MG et al (2004) Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab 89:3864–3871. doi:10.1210/jc.2003-031986

    CAS  PubMed  Google Scholar 

  • Cronan JE (1997) In vivo evidence that acyl coenzyme a regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819–1823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Defronzo RA (1981) Glucose-intolerance and aging. Diabetes Care 4:493–501. doi:10.2337/diacare.4.4.493

    CAS  PubMed  Google Scholar 

  • DeNino WF, Tchernof A, Dionne IJ, Toth MJ, Ades PA, Sites CK, Poehlman ET (2001) Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care 24:925–932. doi:10.2337/diacare.24.5.925

    CAS  PubMed  Google Scholar 

  • Dube JJ, Amati F, Stefanovic-Racic M, Toledo FGS, Sauers SE, Goodpaster BH (2008) Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am JPhysiol-Endocrinol Metab 294:E882–E888. doi:10.1152/ajpendo.00769.2007

    CAS  Google Scholar 

  • Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ (2000) Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am JPhysiol-Endocrinol Metab 279:E554–E560

    CAS  Google Scholar 

  • Fan J-G, Farrell GC (2009) Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol 50:204–210. doi:10.1016/j.jhep.2008.10.010

    PubMed  Google Scholar 

  • Fantin F et al (2013) Central and peripheral fat and subclinical vascular damage in older women. Age Ageing 42:359–365. doi:10.1093/ageing/aft005

    PubMed  Google Scholar 

  • Feng Y, Cronan JE (2009) A New Member of the Escherichia coli fad Regulon: transcriptional Regulation of fadM (ybaW). J Bacteriol 191:6320–6328. doi:10.1128/jb.00835-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Flannery C, Dufour S, Rabol R, Shulman GI, Petersen KF (2012) Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 61:2711–2717. doi:10.2337/db12-0206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging: an evolutionary perspective on immunosenescence. Mol Cell Gerontol 908:244–254

    CAS  Google Scholar 

  • Frisard MI et al (2007) Aging, resting metabolic rate, and oxidative damage; results from the Louisiana healthy aging study. J Gerontol Ser A-Biol Sci Med Sci 62:752–759

    Google Scholar 

  • Frith J, Day CP, Henderson E, Burt AD, Newton JL (2009) Non-alcoholic fatty liver disease in older people. Gerontology 55:607–613. doi:10.1159/000235677

    CAS  PubMed  Google Scholar 

  • Fuke Y, Okabe S, Kajiwara N, Suastika K, Budhiarta AAG, Maehata S, Taniguchi H (2007) Increase of visceral fat area in Indonesians and Japanese with normal BMI. In: 13th Korea-Japan Symposium on Diabetes Mellitus, Seoul, SOUTH KOREA, Nov 11–12 Sep 2005. pp S224-S227. doi:10.1016/j.diabres.2007.01.062

  • Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (nafld) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5:1544–1560. doi:10.3390/nu5051544

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao D, Bailey CJ, Griffiths HR (2009) Metabolic memory effect of the saturated fatty acid, palmitate, in monocytes. Biochem Biophys Res Commun 388:278–282. doi:10.1016/j.bbrc.2009.07.160

    CAS  PubMed  Google Scholar 

  • Gao D, Pararasa C, Dunston CR, Bailey CJ, Griffiths HR (2012) Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Rad Biol Med 53:796–806. doi:10.1016/j.freeradbiomed.2012.05.026

    CAS  PubMed  Google Scholar 

  • Giusto NM, Roque ME, Deboschero MGI (1992) Effects of aging on the content composition and synthesis of sphingomyelin in the central-nervous-system. Lipids 27:835–839. doi:10.1007/bf02535859

    CAS  PubMed  Google Scholar 

  • Goodpaster BH et al (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Int Med 165:777–783

    Google Scholar 

  • Gumbiner B, Thorburn AW, Ditzler TM, Bulacan F, Henry RR (1992) Role of impaired intracellular glucose-metabolism in the insulin resistance of aging. Metab-Clin Exp 41:1115–1121

    CAS  PubMed  Google Scholar 

  • Guo W et al (2007a) Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity. Am J Physiol-Endocrinol Metab 292:E1041–E1051. doi:10.1152/ajpendo.00557.2006

    CAS  PubMed  Google Scholar 

  • Guo W, Wong S, Xie W, Lei T, Luo Z (2007b) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol-Endocrinol Metab 293:E576–E586. doi:10.1152/ajpendo.00523.2006

  • Hansen T, Ahlstrom H, Soderberg S, Hulthe J, Wikstrom J, Lind L, Johansson L (2009) Visceral adipose tissue, adiponectin levels and insulin resistance are related to atherosclerosis as assessed by whole-body magnetic resonance angiography in an elderly population. Atherosclerosis 205:163–167. doi:10.1016/j.atherosclerosis.2008.11.007

  • Harman-Boehm I et al (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247. doi:10.1210/jc.2006-1811

    CAS  PubMed  Google Scholar 

  • Heitmann BL, Frederiksen P (2009) Thigh circumference and risk of heart disease and premature death: prospective cohort study. Br Med J 339. doi:10.1136/bmj.b3292

    Google Scholar 

  • Heshka S et al (2008) Altered body composition in type 2 diabetes mellitus. Int J Obes 32:780–787. doi:10.1038/sj.ijo.0803802

    CAS  Google Scholar 

  • Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR (2008) Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther 88:1336–1344. doi:10.2522/ptj.20080079

    PubMed Central  PubMed  Google Scholar 

  • Houmard JA et al (1995) Skeletal-muscle glut4 protein-concentration and aging in humans. Diabetes 44:555–560

    CAS  PubMed  Google Scholar 

  • Houmard JA, Tanner CJ, Yu CL, Cunningham PG, Pories WJ, MacDonald KG, Shulman GI (2002) Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty Acyl-CoAs in morbidly obese subjects. Diabetes 51:2959–2963

    CAS  PubMed  Google Scholar 

  • Hu G et al (2011) Trunk versus extremity adiposity and cardiometabolic risk factors in white and African American adults. Diabetes Care 34:1415–1418. doi:10.2337/dc10-2019

    PubMed Central  PubMed  Google Scholar 

  • Huang S et al (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. In: J Lipid Res, vol 53. vol 9. United States, pp 2002–2013. doi: 10.1194/jlr.D029546

  • Hube F, Hauner H (1999) The role of TNF-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance? Horm Metab Res 31:626–631

    CAS  PubMed  Google Scholar 

  • Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Singh MAF (2004) Anthropometric assessment of 10-year changes in body composition in the elderly. Am J Clin Nutr 80:475–482

    CAS  PubMed  Google Scholar 

  • Ishikawa M et al (2014) Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS ONE 9:e91806. doi:10.1371/journal.pone.0091806

    PubMed Central  PubMed  Google Scholar 

  • Itani SI, Pories WJ, MacDonald KG, Dohm GL (2001) Increased protein kinase C theta in skeletal muscle of diabetic patients. Metab-Clin Exp 50:553–557

    CAS  PubMed  Google Scholar 

  • Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and I kappa B-alpha. Diabetes 51:2005–2011

    CAS  PubMed  Google Scholar 

  • Jerschow E, Anwar S, Barzilai N, Rosenstreich D (2007) Macrophages accumulation in visceral and subcutaneous adipose tissue correlates with age. J Allergy Clin Immunol 119:S179–S179. doi:10.1016/j.jaci.2006.12.066

    Google Scholar 

  • Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    CAS  PubMed  Google Scholar 

  • Kagansky N et al (2004) Non-alcoholic fatty liver disease: a common and benign finding in octogenarian patients. Liver Int 24:588–594. doi:10.1111/j.1478-3231.2004.0969.x

    PubMed  Google Scholar 

  • Kajkenova O et al (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12:1772–1779

    CAS  PubMed  Google Scholar 

  • Karagiannides I et al (2001) Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol-Regul Integr Comp Physiol 280:R1772–R1780

    CAS  PubMed  Google Scholar 

  • Karagiannides I et al (2006) Increased CUG triplet repeat-binding protein-1 predisposes to impaired adipogenesis with aging. J Biol Chem 281:23025–23033. doi:10.1074/jbc.M513187200

    CAS  PubMed  Google Scholar 

  • Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683

    CAS  PubMed  Google Scholar 

  • Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB (1995) The expression of tumor-necrosis-factor in human adipose-tissue: regulation by obesity, weight-loss, and relationship to lipoprotein-lipase. J Clin Investig 95:2111–2119. doi:10.1172/jci117899

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JK et al (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 98:7522–7527

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DJ, Bergstrom J, Barrett-Connor E, Laughlin GA (2008) Visceral adiposity and subclinical coronary artery disease in elderly adults: rancho Bernardo study. Obesity 16:853–858. doi:10.1038/oby.2008.15

    PubMed Central  PubMed  Google Scholar 

  • Kirkland JL, Tchkonia T, Pirtskhalava T, Han JR, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767

    CAS  PubMed  Google Scholar 

  • Krebs M, Roden M (2005) Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes Metab 7:621–632. doi:10.1111/j.1463-1326.2004.00439.x

    CAS  PubMed  Google Scholar 

  • Krems C, Luhrmann PM, Strassburg A, Hartmann B, Neuhauser-Berthold M (2005) Lower resting metabolic rate in the elderly may not be entirely due to changes in body composition. Eur J Clin Nutr 59:255–262. doi:10.1038/sj.ejcn.1602066

    CAS  PubMed  Google Scholar 

  • Kuk JL, Lee S, Heymsfield SB, Ross R (2005) Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr 81:1330–1334

    CAS  PubMed  Google Scholar 

  • Kuk JL, Saunders TJ, Davidson LE, Ross R (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8:339–348

    PubMed  Google Scholar 

  • Laybutt DR, Schmitz-Peiffer C, Saha AK, Ruderman NB, Biden TJ, Kraegen EW (1999) Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat. Am J Physiol-Endocrinol Metab 277:E1070–E1076

    CAS  Google Scholar 

  • Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–16689. doi:10.1074/jbc.M011695200

    CAS  PubMed  Google Scholar 

  • Lee M, Choh AC, Demerath EW, Towne B, Siervogel RM, Czerwinski SA (2012a) Associations between trunk, leg and total body adiposity with arterial stiffness. Am J Hypertens 25:1131–1137. doi:10.1038/ajh.2012.92

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee Y et al (2012b) Comparison of regional body composition and its relation with cardiometabolic risk between BMI-matched young and old subjects. Atherosclerosis 224:258–265. doi:10.1016/j.atherosclerosis.2012.07.013

    CAS  PubMed  Google Scholar 

  • Li H et al (2009) Prevalence and risk factors of fatty liver disease in Chengdu, Southwest China. Hepatobiliary & Pancreatic Dis Int 8:377–382

    Google Scholar 

  • Li CY, Ford ES, Zhao GX, Kahn HS, Mokdad AH (2010) Waist-to-thigh ratio and diabetes among US adults: the third national health and nutrition examination survey. Diabetes Res Clin Pract 89:79–87. doi:10.1016/j.diabres.2010.02.014

    PubMed  Google Scholar 

  • Li X et al (2012) Liver fat content is associated with increased carotid atherosclerosis in a Chinese middle-aged and elderly population: the Shanghai Changfeng study. Atherosclerosis 224:480–485. doi:10.1016/j.atherosclerosis.2012.07.002

    CAS  PubMed  Google Scholar 

  • Lightle SA, Oakley JI, Nikolova-Karakashian MN (2000) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev 120:111–125. doi:10.1016/s0047-6374(00)00191-3

    CAS  PubMed  Google Scholar 

  • Lim S et al (2009) Fat in liver/muscle correlates more strongly with insulin sensitivity in rats than abdominal fat. Obesity 17:188–195

    CAS  PubMed  Google Scholar 

  • Lin JL et al (1991) Altered expression of glucose transporter isoforms with aging in rats: selective decrease in glut4 in the fat tissue and skeletal-muscle. Diabetologia 34:477–482

    CAS  PubMed  Google Scholar 

  • Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J Magn Reson Imaging 26:787–793. doi:10.1002/Jmri.21072

    PubMed  Google Scholar 

  • Lio D et al (2002) Gender-specific association between-1082 IL-10 promoter polymorphism and longevity. Genes Immun 3:30–33. doi:10.1038/sj/gene/6363827

    CAS  PubMed  Google Scholar 

  • Little JP, Madeira JM, Klegeris A (2012) The saturated fatty acid palmitate induces human monocytic cell toxicity toward neuronal cells: exploring a possible link between obesity-related metabolic impairments and neuroinflammation. J Alzheimers Dis 30:S179–S183. doi:10.3233/jad-2011-111262

    PubMed  Google Scholar 

  • Liu C-C et al (2010) Age-related differences in the clinical presentation, associated metabolic abnormality, and estimated cardiovascular risks from nonalcoholic fatty liver disease: a cross-sectional study from health evaluation center in Taiwan. Int J Gerontol 4:184–191. doi:10.1016/j.ijge.2010.11.005

    CAS  Google Scholar 

  • Machann J et al (2005) Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. Magn Reson Mater Phys Biol Med 18:128–137. doi:10.1007/s10334-005-0401-x

  • Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14:362–366. doi:10.1007/s12603-010-0081-2

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marcus RL, Addison O, LaStayo PC (2013) Intramuscular adipose tissue attenuates gains in muscle quality in older adults at high risk for falling. A brief report. J Nutr Health Aging 17:215–218. doi:10.1007/s12603-012-0377-5

    CAS  PubMed  Google Scholar 

  • Mata P et al (1996) Effect of dietary fat saturation on LDL oxidation and monocyte adhesion to human endothelial cells in vitro. Arterioscler Thromb Vasc Biol 16:1347–1355

    CAS  PubMed  Google Scholar 

  • Mazzali G et al (2006) Interrelations between fat distribution, muscle lipid content, adipocytokines, and insulin resistance: effect of moderate weight loss in older women. Am J Clin Nutr 84:1193–1199

    CAS  PubMed  Google Scholar 

  • McLaughlin T, Lamendola C, Liu A, Abbasi F (2011) Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab 96:E1756–E1760. doi:10.1210/jc.2011-0615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miljkovic I et al (2009) Greater adipose tissue infiltration in skeletal muscle among older men of African ancestry. J Clin Endocrinol Metab 94:2735–2742. doi:10.1210/jc.2008-2541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montell E et al (2001) DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol-Endocrinol Metab 280:E229–E237

    CAS  PubMed  Google Scholar 

  • Morin CL, Pagliassotti MJ, Windmiller D, Eckel RH (1997) Adipose tissue-derived tumor necrosis factor-alpha activity is elevated in older rats. J Gerontol Ser A-Biol Sci Med Sci 52:B190–B195

    CAS  Google Scholar 

  • Morin CL, Gayles EC, Podolin DA, Wei YR, Xu MM, Pagliassotti MJ (1998) Adipose tissue-derived tumor necrosis factor activity correlates with fat cell size but not insulin action in aging rats. Endocrinology 139:4998–5005

    CAS  PubMed  Google Scholar 

  • Nicklas BJ et al (2006) Abdominal obesity is an independent risk factor for chronic heart failure in older people. J Am Geriatr Soc 54:413–420. doi:10.1111/j.1532-5415.2005.00624.x

    PubMed  Google Scholar 

  • Ohanian J, Liao A, Forman SP, Ohanian V (2014) Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2. doi:10.14814/phy2.12015

  • Park JS, Cho MH, Ahn CW, Kim KR, Huh KB (2012) The association of insulin resistance and carotid atherosclerosis with thigh and calf circumference in patients with type 2 diabetes. Cardiovasc Diabetol 11:8. doi:10.1186/1475-2840-11-62

    Google Scholar 

  • Perez GI et al (2005) A central role for ceramide in the age-related acceleration of apoptosis in the female germline. Faseb J 19:860–862. doi:10.1096/fj.04-2903fje

  • Permana PA, Menge C, Reaven PD (2006) Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 341:507–514. doi:10.1016/j.bbrc.2006.01.012

    CAS  PubMed  Google Scholar 

  • Perseghin G et al (2008) Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology 47:51–58

    CAS  PubMed  Google Scholar 

  • Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pickersgill L, Litherland GJ, Greenberg AS, Walker M, Yeaman SJ (2007) Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem 282:12583–12589. doi:10.1074/jbc.M611157200

    CAS  PubMed  Google Scholar 

  • Pilz S et al (2006) Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab 91:2542–2547. doi:10.1210/jc.2006-0195

    CAS  PubMed  Google Scholar 

  • Qu X, Seale JP, Donnelly R (1999a) Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats: effects of feeding. J Endocrinol 162:207–214

    CAS  PubMed  Google Scholar 

  • Qu XQ, Seale JP, Donnelly R (1999b) Tissue- and isoform-specific effects of aging in rats on protein kinase C in insulin-sensitive tissues. Clin Sci 97:355–361

    CAS  PubMed  Google Scholar 

  • Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO (2006) Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care 29:673–678

    PubMed  Google Scholar 

  • Rivas DA et al (2012) Increased ceramide content and NF kappa B signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J Appl Physiol 113:1727–1736. doi:10.1152/japplphysiol.00412.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Calvo R et al (2007) Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J Gerontol Ser A-Biol Sci Med Sci 62:1326–1336

    Google Scholar 

  • Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    CAS  PubMed  Google Scholar 

  • Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow Fat and the Bone Microenvironment: developmental, Functional, and Pathological Implications. Crit Rev Eukaryot Gene Expr 19:109–124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101

    CAS  PubMed  Google Scholar 

  • Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schrauwen-Hinderling VB et al (2005) Iramyocellular lipid content and molecular adaptations in response to a 1-week high-fat diet. Obes Res 13:2088–2094

    CAS  PubMed  Google Scholar 

  • Schwartz EA et al (2010) Nutrient modification of the innate immune response a novel mechanism by which saturated fatty acids greatly amplify monocyte inflammation. Arterioscler Thromb Vasc Biol 30:802–808. doi:10.1161/atvbaha.109.201681

    CAS  PubMed  Google Scholar 

  • Schwenzer NF, Martirosian P, Machann J, Schraml C, Steidle G, Claussen CD, Schick F (2009) aging effects on human calf muscle properties assessed by MRI at 3 tesla. J Magn Reason Imaging 29:1346–1354. doi:10.1002/jmri.21789

    Google Scholar 

  • Shay CM, Secrest AM, Goodpaster BH, Kelsey SF, Strotmeyer ES, Orchard TJ (2010) Regional adiposity and risk for coronary artery disease in type 1 diabetes: does having greater amounts of gluteal-femoral adiposity lower the risk? Diabetes Res Clin Pract 89:288–295. doi:10.1016/j.diabres.2010.03.028

    PubMed Central  PubMed  Google Scholar 

  • Silaghi A et al (2008) Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity 16:2424–2430. doi:10.1038/oby.2008.379

    PubMed  Google Scholar 

  • Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J, Helge JW (2008) Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 51:1253–1260. doi:10.1007/s00125-008-1014-z

    CAS  PubMed  Google Scholar 

  • Slawik M, Vidal-Puig AJ (2006) Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 5:144–164. doi:10.1016/j.arr.2006.03.004

    CAS  PubMed  Google Scholar 

  • Solomon TPJ, Marchetti CM, Krishnan RK, Gonzalez F, Kirwan JP (2008) Effects of aging on basal fat oxidation in obese humans. Metab Clin Exp 57:1141–1147. doi:10.1016/j.metabol.2008.03.021

    PubMed Central  CAS  PubMed  Google Scholar 

  • Starr ME, Evers BM, Saito H (2009) Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol Ser A-Biol Sci Med Sci 64:723–730 doi:10.1093/gerona/glp046

  • Stephens JM, Pekala PH (1992) Transcriptional repression of the C/Ebp-alpha and Glut4 genes In 3t3-L1 adipocytes by tumor-necrosis-factor-alpha: regulation is coordinate and independent of protein-synthesis. J Biol Chem 267:13580–13584

    CAS  PubMed  Google Scholar 

  • St-Onge MP, Gallagher D (2010) Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26:152–155. doi:10.1016/j.nut.2009.07.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068. doi:10.1161/01.atv.0000183883.72263.13

    CAS  PubMed  Google Scholar 

  • Suganami T et al (2007) Role of the Toll-like receptor 4/NF-kappa B pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27:84–91. doi:10.1161/01.ATV.0000251608.09329.9a

  • Sutton-Tyrrell K et al (2001) Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition. Hypertension 38:429–433

    CAS  PubMed  Google Scholar 

  • Takahashi K et al (2008) JNK- and I kappa B-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro. Am J Physiol-Endocrinol Metab 294:E898–E909. doi:10.1152/ajpendo.00131.2007

  • Takamura T, Misu H, Ota T, Kaneko S (2012) Fatty liver as a consequence and cause of insulin resistance: lessons from type 2 diabetic liver. Endocr J 59:745–763

    CAS  PubMed  Google Scholar 

  • Tchkonia T, Wise B, Chan G, Karagiannides I, Kirkland JL (2001) Aging, CHOP expression, and preadipocyte differentiation. Obes Res 9:147S–147S

    Google Scholar 

  • Tchkonia T et al (2007) Increased TNF alpha and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis. Am J Physiol-Endocrinol Metab 293:E1810–E1819. doi:10.1152/ajpendo.00295.2007

    CAS  PubMed  Google Scholar 

  • Thompson AL, Cooney GJ (2000) Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance. Diabetes 49:1761–1765

    CAS  PubMed  Google Scholar 

  • Tiikkainen M et al (2002) Liver-fat accumulation and insulin resistance in obese women with previous gestational diabetes. Obes Res 10:859–867

    CAS  PubMed  Google Scholar 

  • Tomas E et al (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA 99:16309–16313. doi:10.1073/pnas.222657499

  • Tsintzas K, Chokkalingam K, Jewell K, Norton L, Macdonald IA, Constantin-Teodosiu D (2007) Elevated free fatty acids attenuate the insulin-induced suppression of PDK4 gene expression in human skeletal muscle: potential role of intramuscular long-chain acyl-coenzyme a. J Clin Endocrinol Metab 92:3967–3972. doi:10.1210/jc.2007-1104

    CAS  PubMed  Google Scholar 

  • Ueno K et al (2009) Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions. Circ J 73:1927–1933

    PubMed  Google Scholar 

  • van der Meer RW et al (2008) The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J 29:1516–1522. doi:10.1093/eurheartj/ehn207

    PubMed  Google Scholar 

  • van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metab Clin Exp 53:632–637. doi:10.1016/j.metabol.2003.11.012

    PubMed  Google Scholar 

  • van Loon LJC, Goodpaster BH (2006) Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state. Pflugers Archiv-Eur J Physiol 451:606–616. doi:10.1007/s00424-005-1509-0

    CAS  Google Scholar 

  • Van Pelt RE, Jankowski CM, Gozansky WS, Wolfe P, Schwartz RS, Kohrt WM (2011) Sex differences in the association of thigh fat and metabolic risk in older adults. Obesity 19:422–428. doi:10.1038/oby.2010.140

    PubMed Central  PubMed  Google Scholar 

  • Venable ME, Webb-Froehlich LM, Sloan EF, Thomley JE (2006) Shift in sphingolipid metabolism leads to an accumulation of ceramide in senescence. Mech Ageing Dev 127:473–480. doi:10.1016/j.mad.2006.01.003

    CAS  PubMed  Google Scholar 

  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig 112:1796–1808. doi:10.1172/jci2000319246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu ZD et al (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3:151–158

    CAS  PubMed  Google Scholar 

  • Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, Meydani SN (2007) Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol 179:4829–4839

    CAS  PubMed  Google Scholar 

  • Wu HY et al (2010) Independent and opposite associations of trunk and leg fat depots with adipokines, inflammatory markers, and metabolic syndrome in middle-aged and older chinese men and women. J Clin Endocrinol Metab 95:4389–4398. doi:10.1210/jc.2010-0181

    CAS  PubMed  Google Scholar 

  • Yaney GC, Korchak HM, Corkey BE (2000) Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology 141:1989–1998

    CAS  PubMed  Google Scholar 

  • Yim JE, Heshka S, Albu J, Heymsfield S, Kuznia P, Harris T, Gallagher D (2007) Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int J Obes 31:1400–1405. doi:10.1038/sj.ijo.0803621

    CAS  Google Scholar 

  • Youm Y-H et al (2012) The NLRP3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 1:56–68. doi:10.1016/j.celrep.2011.11.005

  • Yu CL et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    CAS  PubMed  Google Scholar 

  • Zamboni M et al (2003) Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin Exp Res 15:321–327

    PubMed  Google Scholar 

  • Zhang B, Berger J, Hu EI, Szalkowski D, WhiteCarrington S, Spiegelman BM, Moller DE (1996) Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10:1457–1466

    CAS  PubMed  Google Scholar 

  • Zhang WY, Schwartz E, Wang YJ, Attrep J, Li Z, Reaven P (2006) Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells. Arterioscler Thromb Vasc Biol 26:514–519. doi:10.1161/01.atv.0000200226.53994.09

  • Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and fatty acids. Endocrinology 148:5696–5705. doi:10.1210/en.2007-0183

    CAS  PubMed  Google Scholar 

  • Zuo Y, Qiang L, Farmer SR (2006) Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem 281:7960–7967. doi:10.1074/jbc.M510682200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the BBSRC Targeted Priority Studentship in Ageing scheme which funded CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chathyan Pararasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pararasa, C., Bailey, C.J. & Griffiths, H.R. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 16, 235–248 (2015). https://doi.org/10.1007/s10522-014-9536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9536-x

Keywords

Navigation