Research Article


, Volume 12, Issue 4, pp 309-320

Open Access This content is freely available online to anyone, anywhere at any time.

A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast

  • Anna LewinskaAffiliated withDepartment of Biochemistry and Cell Biology, University of Rzeszow Email author 
  • , Ewa MacierzynskaAffiliated withDepartment of Molecular Biophysics, University of Lodz
  • , Agnieszka GrzelakAffiliated withDepartment of Molecular Biophysics, University of Lodz
  • , Grzegorz BartoszAffiliated withDepartment of Biochemistry and Cell Biology, University of RzeszowDepartment of Molecular Biophysics, University of Lodz


In mammals, NO, a signaling molecule is implicated in the regulation of vasodilation, neurotransmission and immune response. It is believed that NO is a signaling molecule also in unicellular organism like yeast and may be involved in the regulation of apoptosis and sporulation. It has been reported that NO is produced during chronological aging (CA) leading to an increase of the superoxide level, which in turn mediates apoptosis. Since this conclusion was based on indirect measurements of NO by the Griess reaction, the role of NO signaling during CA in the yeast remains uncertain. We investigated this issue more precisely using different genetic and biochemical methodologies. We used cells lacking the factors influencing nitrosative stress response like flavohemoglobin metabolizing NO, S-nitrosoglutathione reductase metabolizing S-nitrosoglutathione and the transcription factor Fzf1p mediating NO response. We measured the standard parameters describing CA and found an elevation in the superoxide level, percentage of death cells, the level of TUNEL positive cells and a decrease in proliferating potential. These observations showed no significant differences between wild type cells and the disruptants except for a small elevation of the superoxide level in the Δsfa1 mutant. The intracellular NO level and flavohemoglobin expression decreased rather than increased during CA. Products of general nitrogen metabolism and protein tyrosine nitration were slightly decreased during CA, the magnitude of changes showing no differences between the wild type and the mutant yeast. Altogether, our data indicate that apoptosis during yeast CA is mediated by superoxide signaling rather than NO signaling.


Yeast Saccharomyces cerevisiae Flavohemoglobin Chronological aging Nitric oxide