Skip to main content
Log in

Telomerase activity in HeLa cervical carcinoma cell line proliferation

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Normal human somatic cells in culture have a limited dividing potential. This is due to DNA end replication problem, whereby telomeres shorten with each subsequent cell division. When a critical telomere length is reached cells enter senescence. To overcome this problem, immortal HeLa cell line express telomerase, an enzyme that prevents telomere shortening. Although immortal, the existence of non-dividing cells that do not incorporate 3H-thymidine over 24 h of growth has been well documented in this cell line. Using DiI labeling and high-speed cell sorting, we have separated and analyzed fractions of HeLa cells that divided vigorously as well as those that cease divisions over several days in culture. We also analyzed telomerase activity in separated fractions and surprisingly, found that the fraction of cells that divided 0–1 time over 6 days in culture have several times higher endogenous telomerase activity than the fastest dividing fraction. Additionally, the non-growing fraction regains an overall high labeling index and low SA-β-Gal activity when subcultured again. This phenomenon should be considered if telomerase inhibition is to be used as an approach to cancer therapy. In this paper we also discuss possible molecular mechanisms that underlie the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14:4240–4248

    PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, Dunham M, Reddel RR (1998) Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res 239:370–378

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (1992) Gene expression in quiescent and senescent fibroblasts. Ann NY Acad Sci 21:195–201

    Article  Google Scholar 

  • Campisi J (2000) Cancer, aging and cellular senescence. In Vivo 14:183–188

    PubMed  CAS  Google Scholar 

  • Corey RD (2002) Telomerase inhibition, oligonucleotides, and clinical trials. Oncogene 21:631–637

    Article  PubMed  CAS  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cell which express telomerase activity. EMBO J 11:1921–1929

    PubMed  CAS  Google Scholar 

  • Cristofalo VJ, Pignolo RJ, Rotenberg MO (1992) Molecular changes with in vitro cellular senescence. Ann NY Acad Sci 663:187–194

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith OM (1995) A biomarker that identifies senescent human cells in culture and aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW, Villeponteau B (1995) The RNA component of human telomerase. Science 269:1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Ferenac M, Polancec D, Huzak M, Pereira-Smith OM, Rubelj I (2005) Early-senescing human skin fibroblasts do not demonstrate accelerated telomere shortening. J Gerontol A Biol Sci Med Sci 60:820–829

    PubMed  Google Scholar 

  • Goodwin EC, DiMaio D (2001) Induced senescence in HeLa cervical carcinoma cells containing elevated telomerase activity and extended telomeres. Cell Growth Differ 11:525–534

    Google Scholar 

  • Gorbunova V, Seluanov A, Pereira-Smith OM (2003) Evidence that high telomerase activity may induce a senescent-like growth arrest in human fibroblasts. J Biol Chem 287:7692–7698

    Article  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblast. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  PubMed  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity in immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Ledley FD, Soriano HE, O’Malley BW Jr, Lewis D, Darlington GJ, Finegold M (1992) DiI as a marker for cellular transplantation into solid organs. Biotechniques 13:580–587

    PubMed  CAS  Google Scholar 

  • Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  PubMed  CAS  Google Scholar 

  • Martinez AO, Norwood TH, Prothero JW, Martin GM (1978) Evidence for clonal attenuation of growth potential in HeLa cells. In Vitro 14:996–1002

    PubMed  CAS  Google Scholar 

  • Matsumura T, Pfendt EA, Hayflick L (1979) DNA synthesis in the human diploid cell strain WI-38 during in vitro aging: an autoradiography study. J Gerontol 34:323–327

    PubMed  CAS  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  PubMed  CAS  Google Scholar 

  • Neumann AA, Reddel RR (2002) Telomere maintenance and cancer—look, no telomerase. Nat Rev Cancer 2:879–884

    Article  PubMed  CAS  Google Scholar 

  • Olovnikov AM (1973) The incomplete copying of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Smith OM, Smith JR (1981) Expression of SV40 T antigen in finite life-span hybrids of normal and SV40-transformed fibroblasts. Somatic Cell Genet 7:411–421

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Can Res 63:2705–2715

    CAS  Google Scholar 

  • Rubelj I, Venable SF, Lednicky J, Butel JS, Bilyeu T, Darlington G, Surmacz E, Campisi J, Pereira-Smith OM (1997) Loss of T-antigen sequences allows SV40-transformed human cells in crisis to acquire a senescent-like phenotype. J Gerontol A Biol Sci Med Sci 52:229–234

    Google Scholar 

  • Rubelj I, Huzak M, Brdar B, Pereira-Smith OM (2002) A single stage mechanism controls replicative senescence through Sudden Senescence Syndrome. Biogerontology 3:213–222

    Article  PubMed  CAS  Google Scholar 

  • Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres and oxidative stress. Ann NY Acad Sci 959:24–29

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  PubMed  CAS  Google Scholar 

  • Te Poele RH, Ohorkov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    PubMed  CAS  Google Scholar 

  • Touissaint O, Medrano EE, Von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    Article  Google Scholar 

  • Von Zglinicki T, Nilsson E, Docke WD, Brunk UT (1995) Lipofuscin accumulation and ageing of fibroblasts. Gerontology 41:95–108

    Article  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Olivia Pereira-Smith, Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio for reviewing the manuscript. This work was supported by Croatian Ministry of Science, Education and Sports grant 0098077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Rubelj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanković, M., Ćukušić, A., Gotić, I. et al. Telomerase activity in HeLa cervical carcinoma cell line proliferation. Biogerontology 8, 163–172 (2007). https://doi.org/10.1007/s10522-006-9043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9043-9

Keywords

Navigation