, Volume 11, Issue 2, pp 687-707
Date: 31 Oct 2012

Finite element analysis and experimental verification of the scrap tire rubber pad isolator

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A new base isolation system using scrap tire rubber pads (STRP) has been introduced for seismic mitigation of ordinary residential buildings. The rubber and the steel reinforcing cords used in manufacturing the tire are the alternative materials of the proposed base isolation system. The steel reinforcing cords represent the steel plates used in conventional laminated rubber bearings. These steel reinforcing cords shall prevent the lateral bulging of the rubber bearing. The proposed base isolation system has no bonding between the superstructure and the foundation beam which allows for rollover deformation. In the first part of the study, the STRP layers were just stacked one on top of another without applying the adhesive. This paper presents loading test as well as finite element analysis (FE analysis) of strip STRP isolators that are subjected to any given combination of static vertical and lateral loads. The results of the static vertical and horizontal loading test conducted on STRP isolators were used to calculate the mechanical properties of the isolators, including stiffness and damping values. The load–displacement relationship of STRP isolators were compared between experimental and FE analysis results and the results were found to be in close agreement. The stress state within the STRP isolators was also analyzed in order to estimate the maximum stress demand in the rubber and steel reinforcing cords. These STRP isolators have several advantages over conventional laminated rubber bearings including superior damping properties, lower incurred cost, light weight and easily available material. This study suggests that using the STRP as low cost base isolation device for ordinary residential buildings is feasible.