, Volume 22, Issue 1, pp 31-52

Monads and Mathematics: Gödel and Husserl

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In 1928 Edmund Husserl wrote that “The ideal of the future is essentially that of phenomenologically based (“philosophical”) sciences, in unitary relation to an absolute theory of monads” (“Phenomenology”, Encyclopedia Britannica draft) There are references to phenomenological monadology in various writings of Husserl. Kurt Gödel began to study Husserl’s work in 1959. On the basis of his later discussions with Gödel, Hao Wang tells us that “Gödel’s own main aim in philosophy was to develop metaphysics—specifically, something like the monadology of Leibniz transformed into exact theory—with the help of phenomenology.” (A Logical Journey: From Gödel to Philosophy, p. 166) In the Cartesian Meditations and other works Husserl identifies ‘monads’ (in his sense) with ‘transcendental egos in their full concreteness’. In this paper I explore some prospects for a Gödelian monadology that result from this identification, with reference to texts of Gödel and to aspects of Leibniz’s original monadology.

Parts of this paper were presented at the Institut d’histoire et de philosophie des sciences et des techniques (IHPST/CNRS) in Paris in late November 2010.
See also my forthcoming book After Gödel: Platonism and Rationalism in Mathematics and Logic (Oxford University Press).