Skip to main content

Advertisement

Log in

Clues from Current High CO2 Environments on the Effects of Ocean Acidification on CaCO3 Preservation

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Acidification of surface seawater owing to anthropogenic activities has raised serious concerns on its consequences for marine calcifying organisms and ecosystems. To acquire knowledge concerning the future consequences of ocean acidification (OA), researchers have relied on incubation experiments with organisms exposed to future seawater conditions, numerical models, evidence from the geological record, and recently, observations from aquatic environments exposed to naturally high CO2 and low pH, e.g., owing to volcanic CO2 vents, upwelling, and groundwater input. In the present study, we briefly evaluate the distribution of dissolved CO2–carbonic acid parameters at (1) two locations in the Pacific and the Atlantic Ocean as a function of depth, (2) a mangrove environment in Bermuda, (3) a seasonally stratified body of water in a semi-enclosed sound in Bermuda, and (4) in temporarily isolated tide pools in Southern California. We demonstrate that current in situ conditions of seawater pCO2, pH, and CaCO3 saturation state (Ω) in these environments are similar or even exceed the anticipated changes to these parameters in the open ocean over the next century as a result of OA. The observed differences between the Pacific and Atlantic Oceans with respect to seawater CO2–carbonic acid chemistry, preservation of CaCO3 minerals, and the occurrence and distribution of deep-sea marine calcifiers, support the hypothesized negative effects of OA on the production and preservation of CaCO3 in surface seawater. Clues provided from shallow near-shore environments in Bermuda and Southern California support these predictions, but also highlight that many marine calcifiers already experience relatively high seawater pCO2 and low pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31(6):513–516

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305(9):875–918

    Article  Google Scholar 

  • Andersson A, Bates N, Mackenzie F (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquat Geochem 13(3):237–264. doi:10.1007/s10498-007-9018-8

    Article  Google Scholar 

  • Andersson AJ, Kuffner IB, Mackenzie FT, Tan A, Jokiel PL, Rodgers KS (2009) Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811–1823

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 122–153

    Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Glob Biogeochem Cycles 12(2):259–276. doi:10.1029/98gb00744

    Article  Google Scholar 

  • Bacastow R, Keeling CK (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A. D. 1700 to 2070 as deduced from a geochemical model. Brookhaven Symp Biol 30:86–135

    Google Scholar 

  • Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J Geophys Res(C9):C09013. doi:10.1029/2006jc003759

  • Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification? Mar Chem 51(4):347–358. doi:10.1016/0304-4203(95)00068-2

    Article  Google Scholar 

  • Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9(7):2509–2522. doi:10.5194/bg-9-2509-2012

    Article  Google Scholar 

  • Bayer FM, Macintyre IG (2001) The mineral composition of the axis and holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proc Biol Soc Wash 114:309–345

    Google Scholar 

  • Berger WH, Adelseck CG Jr, Mayer LA (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. J Geophys Res 81:2617–2627

    Article  Google Scholar 

  • Berner RA, Berner EK, Keir RS (1976) Aragonite dissolution on the Bermuda pedestal: its depth and geochemical significance. Earth Planet Sci Lett 30:169–178

    Article  Google Scholar 

  • Biscaye PE, Kolla V, Turekian KK (1976) Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. J Geophys Res 81:2595–2603

    Article  Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea. Eldigio Press, Palisades

    Google Scholar 

  • Broecker WS, Li YH, Peng TH (1971) Carbon dioxide- man’s unseen artifact. In: Hood DH (ed) Impingement of man on the oceans. Wiley, New York, pp 287–324

    Google Scholar 

  • Cairns SD, Macintyre IG (1992) Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios 7:96–107

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425(6956):365

    Article  Google Scholar 

  • Chave KE (1962) Factors influencing the mineralogy of carbonate sediments. Limnol Oceanogr 7:218–223

    Article  Google Scholar 

  • Crook ED, Cohen AD, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci. doi:10.1073/pnas.1301589110

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part I 34(10):1733–1743. doi:10.1016/0198-0149(87)90021-5

    Article  Google Scholar 

  • Dickson AG, Sabine C, Christian JR (2007) Guide to best practises for ocean CO2 measurements. PICES Special Publication, vol 3. North Pacific Marine Science Organization, Sidney, British Columbia

  • Drupp P, De Carlo EH, Mackenzie FT, Bienfang P, Sabine CL (2011) Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem 17:473–498

    Article  Google Scholar 

  • Drupp P, De Carlo EH, Mackenzie FT, Sabine CL, Feely A, Shamberger K (2013) Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments. Aquat Geochem (in press)

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1(3):165–169

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    Article  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882):1490–1492

    Article  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. Paper presented at the UNEP-WCMC, Cambridge

  • Friedrich J, Dinkel C, Friedl G, Pimenov N, Wijsman J, Gomoiu MT, Cociasu A, Popa L, Wehrli B (2002) Benthic nutrient cycling and diagenetic pathways in the north-western Black Sea. Estuar Coast Shelf Sci 54(3):369–383. doi:10.1006/ecss.2000.0653

    Article  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39(1):160–183. doi:10.1007/s00338-003-0331-4

    Google Scholar 

  • Guinotte J, Buddemeier R, Kleypas J (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22(4):551–558. doi:10.1007/s00338-003-0331-4

    Article  Google Scholar 

  • Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4(3):141–146. doi:10.1890/1540-9295(2006)004[0141:WHCISC]2.0.CO;2

    Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200):96–99

    Article  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6 (12):e28983. doi:10.1371/journal.pone.0028983

  • Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335(6072):1058–1063

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis, Contribution of working group I to the third assessment report of the inter-governmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120

    Article  Google Scholar 

  • Kleypas J, Feely RA, Fabry VJ, Langdon C, Sabine C, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop held 18–20 April 2005. St. Petersburg, FL

  • Kuffner IB, Andersson AJ, Jokiel P, Rodgers KS, Mackenzie FT (2008) Decreases in recruitment of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4(3):225–233

    Article  Google Scholar 

  • Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Environmental Sciences Division publication number 4735, Feb 1998

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci 105:10450–10455

    Article  Google Scholar 

  • Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc London Ser B 270(1511):179–184

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907

    Article  Google Scholar 

  • Montenegro A, Brovkin V, Eby M, Archer D, Weaver AJ (2007) Long term fate of anthropogenic carbon. Geophys Res Lett 34(19):L19707. doi:10.1029/2007gl030905

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates (trans: Mackenzie FT). Developments in sedimentology 048. Elsevier, New York

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg–calcites. Geochim Cosmochim Acta 70(23):5814–5830. doi:10.1016/j.gca.2006.08.017

    Article  Google Scholar 

  • Murray J, Renard AF (1891) Deep sea deposits, report of the scientific results of HMS Challenger, pp 1873–1876

  • Neumann AC (1965) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Bull Mar Sci 15(4):987–1035

    Google Scholar 

  • Orr J (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 41–66

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  Google Scholar 

  • Park G-H, Lee K, Tishchenko P, Min D-H, Warner MJ, Talley LD, Kang D-J, Kim K-R (2006) Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Glob Biogeochem Cycles 20 (4):GB4013. doi:10.1029/2005gb002676

  • Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, New York, pp 99–121

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification in marine plankton in response to increased atmospheric CO2. Nature 407:634–637

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547

    Article  Google Scholar 

  • Schmalz RF, Chave KE (1963) Calcium carbonate: factors affecting saturation in ocean waters off Bermuda. Science 139(3560):1206–1207. doi:10.1126/science.139.3560.1206

    Article  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36(5):L05606. doi:10.1029/2008gl036282

    Article  Google Scholar 

  • Walter LM, Morse JW (1985) The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim Cosmochim Acta 49:1503–1513

    Google Scholar 

  • Zablocki J, Andersson A, Bates N (2011) Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquat Geochem 17(6):841–859. doi:10.1007/s10498-011-9142-3

    Article  Google Scholar 

Download references

Acknowledgments

FTM gratefully acknowledges partial support of this research from a grant from the FNRS of the Belgium-French community and the National Science Foundation (Grants ATM 04-39051, EAR 02-23509, and OCE 07-49401). AJA and NRB are grateful for support from NOAA (Grant NA10AR4310094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, A.J., Bates, N.R., Jeffries, M.A. et al. Clues from Current High CO2 Environments on the Effects of Ocean Acidification on CaCO3 Preservation. Aquat Geochem 19, 353–369 (2013). https://doi.org/10.1007/s10498-013-9210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-013-9210-y

Keywords

Navigation