, Volume 19, Issue 5-6, pp 569-590
Date: 08 Oct 2013

Ecosystem Responses of the Subtropical Kaneohe Bay, Hawaii, to Climate Change: A Nitrogen Cycle Modeling Approach

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The global coastal zone is characterized by high biological productivity and serves as an important channel through which materials are transferred from land to the open ocean, yet little is known how it will be affected by climate change. Here, we use Kaneohe Bay, Hawaii, a semi-enclosed subtropical embayment partially surrounded by a mountainous watershed and fed by river runoff as an example to explore the potential impact of climate change on the pelagic and benthic cycling of nitrogen. We employ a nine-compartment nitrogen cycle biogeochemical box model and perturb it with a set of four idealized climate scenarios. We find that hydrological changes play a dominant role in determining the ecosystem structure, while temperature changes are more important for the trophic state and stability of the ecosystem. The ecosystem stability against storm events does not significantly change under any scenario. The system remains autotrophic in the future; however, it becomes significantly less autotrophic under drier climate, while it turns slightly more autotrophic under wetter climate. These findings may have implications for other high island watershed and coastal ecosystems in the tropics and subtropics.