Skip to main content
Log in

Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Epigenetic abnormalities are associated with non-small cell lung cancer (NSCLC) initiation and progression. Epigenetic drugs are being studied and in clinical trials. However, the molecular mechanism underlying the apoptosis by the epigenetic agents remains unclear. SUV39H1 is an important methyl-transferase for lysine 9 on histone H3 and usually related to gene transcriptional suppression, and chaetocin acts as the inhibitor of SUV39H1. We demonstrated here that chaetocin effectively suppressed the growth of multiple lung cancer cells through inducing apoptosis in a death receptor 5 (DR5)-dependent manner. Chaetocin treatment activated endoplasmic reticulum (ER) stress which gave rise to the up-regulation of ATF3 and CHOP. Furthermore, ATF3 and CHOP contributed to the induction of DR5 and subsequent apoptosis. When SUV39H1 was silenced with siRNA, the expression of ATF3, CHOP and DR5 was elevated. Thereafter, knockdown of SUV39H1 induced apoptosis in NSCLC cells. In summary, chaetocin pharmacologically inhibits the activity of SUV39H1 which provokes ER stress and results in up-regulation of ATF3 and CHOP, leading to DR5-dependent apoptosis eventually. These findings provide a novel interpretation on the anti-neoplastic activity of epigenetic drugs as a new therapeutic approach in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DR5:

Death receptor 5

TRAIL:

TNF-related apoptosis-inducing ligand

HMT:

Histone methyl-transferases

CHOP:

CCAAT/enhancer-binding protein homologous protein

GADD153:

Growth arrest and DNA damage gene 153

ATF3:

Activating transcription factor 3

ER stress:

Endoplasmic reticulum stress

UPR:

Unfolded protein response

PERK:

Pancreatic ER kinase (PKR)-like endoplasmic reticulum kinase

ATF6:

Activating transcription factor 6

IRE1:

Inositol-requiring enzyme-1

BiP:

Binding protein/glucose-regulated protein (GRP)78

p-eIF2α:

Phosphorylated α subunit of eukaryotic translational initiation factor 2

PARP:

Poly(ADP-ribosyl) polymerase

SRB:

Sulforhodamine B

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  2. Balgkouranidou I, Liloglou T, Lianidou ES (2013) Lung cancer epigenetics: emerging biomarkers. Biomark Med 7:49–58

    Article  CAS  PubMed  Google Scholar 

  3. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11:726–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Brazelle W, Kreahling JM, Gemmer J, Ma Y, Cress WD, Haura E et al (2010) Histone deacetylase inhibitors downregulate checkpoint kinase 1 expression to induce cell death in non-small cell lung cancer cells. PLoS One 5:e14335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tang YA, Wen WL, Chang JW, Wei TT, Tan YH, Salunke S et al (2010) A novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption and gene acetylation in lung cancer. PLoS One 5:e12417

    Article  PubMed Central  PubMed  Google Scholar 

  6. Camphausen K, Tofilon PJ (2007) Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 25:4051–4056

    Article  CAS  PubMed  Google Scholar 

  7. Keshelava N, Davicioni E, Wan Z, Ji L, Sposto R, Triche TJ et al (2007) Histone deacetylase 1 gene expression and sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. J Natl Cancer Inst 99:1107–1119

    Article  CAS  PubMed  Google Scholar 

  8. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  9. Cai L, Ma X, Huang Y, Zou Y, Chen X (2014) Aberrant histone methylation and the effect of Suv39H1 siRNA on gastric carcinoma. Oncol Rep 31:2593–2600

    CAS  PubMed  Google Scholar 

  10. Yokoyama Y, Hieda M, Nishioka Y, Matsumoto A, Higashi S, Kimura H et al (2013) Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci 104:889–895

    Article  CAS  PubMed  Google Scholar 

  11. Benlhabib H, Mendelson CR (2011) Epigenetic regulation of surfactant frotein A gene (SP-A) expression in fetal lung reveals a critical role for Suv39h Methyltransferases during development and hypoxia. Mol Cell Biol 31:1949–1958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sidler C, Woycicki R, Li D, Wang B, Kovalchuk I, Kovalchuk O (2014) A role for SUV39H1-mediated H3K9 trimethylationin the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging (Albany NY) 6:545–563

    CAS  Google Scholar 

  13. Pandey M, Sahay S, Tiwari P, Upadhyay DS, Sultana S, Gupta KP (2014) Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: potential targets for cancer control. Toxicol Appl Pharmacol 280:296–304

    Article  CAS  PubMed  Google Scholar 

  14. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    Article  CAS  PubMed  Google Scholar 

  15. Sekita S, Yoshihira K, Natori S, Udagawa S, Muroi T, Sugiyama Y et al (1981) Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27:766–772

    Article  CAS  PubMed  Google Scholar 

  16. Freire FC, Kozakiewicz Z, Paterson RR (2000) Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts. Mycopathologia 149:13–19

    Article  CAS  PubMed  Google Scholar 

  17. Tibodeau JD, Benson LM, Isham CR, Owen WG, Bible KC (2009) The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 11:1097–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Isham CR, Tibodeau JD, Jin W, Xu R, Timm MM, Bible KC (2007) Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109:2579–2588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lee YM, Lim JH, Yoon H, Chun YS, Park JW (2011) Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1alpha pre-mRNA in mice and in vitro. Hepatology 53:171–180

    Article  CAS  PubMed  Google Scholar 

  20. Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A et al (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26:662–674

    Article  CAS  PubMed  Google Scholar 

  21. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    Article  CAS  PubMed  Google Scholar 

  22. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95:777–783

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29:4752–4765

    Article  CAS  PubMed  Google Scholar 

  25. Elrod HA, Sun SY (2008) Modulation of death receptors by cancer therapeutic agents. Cancer Biol Ther 7:163–173

    Article  CAS  PubMed  Google Scholar 

  26. Sun SY (2005) Chemopreventive agent-induced modulation of death receptors. Apoptosis 10:1203–1210

    Article  CAS  PubMed  Google Scholar 

  27. Oh YT, Liu X, Yue P, Kang S, Chen J, Taunton J et al (2010) ERK/ribosomal S6 kinase (RSK) signaling positively regulates death receptor 5 expression through co-activation of CHOP and Elk1. J Biol Chem 285:41310–41319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sun SY, Liu X, Zou W, Yue P, Marcus AI, Khuri FR (2007) The farnesyltransferase inhibitor lonafarnib induces CCAAT/enhancer-binding protein homologous protein-dependent expression of death receptor 5, leading to induction of apoptosis in human cancer cells. J Biol Chem 282:18800–18809

    Article  CAS  PubMed  Google Scholar 

  30. Thompson MR, Xu D, Williams BR (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl) 87:1053–1060

    Article  CAS  Google Scholar 

  31. Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S et al (2012) Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 16:1618–1628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Su L, Liu G, Hao X, Zhong N, Zhong D, Liu X et al (2011) Death receptor 5 and cellular FLICE-inhibitory protein regulate pemetrexed-induced apoptosis in human lung cancer cells. Eur J Cancer 47:2471–2478

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96:1769–1780

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Su L, Cao C, Xu L, Zhong D, Liu X (2013) The chalcone 2′-hydroxy-4′,5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life 65:533–543

    Article  CAS  PubMed  Google Scholar 

  35. Xu L, Su L, Liu X (2012) PKCdelta regulates death receptor 5 expression induced by PS-341 through ATF4-ATF3/CHOP axis in human lung cancer cells. Mol Cancer Ther 11:2174–2182

    Article  CAS  PubMed  Google Scholar 

  36. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  37. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279:45495–45502

    Article  CAS  PubMed  Google Scholar 

  39. Hai T, Jalgaonkar S, Wolford CC, Yin X (2011) Immunohistochemical detection of activating transcription factor 3, a hub of the cellular adaptive-response network. Methods Enzymol 490:175–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (81472686, 31371402, 31171332), the National Key Basic Research Program of China (2013CB910903) and Shandong Provincial Program for Science and Technology development (2014GSF118067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Su.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Xianfang Liu and Sen Guo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Chaetocin inhibits SUV39H1 activity in NSCLC cells. The indicated lung cancer cells were treated with 50, 100, 200 nmol/l chaetocin for 24 h. Then the SUV39H1 activity in the cells was evaluated by detecting the H3-K9me3 levels using Western blot analysis

Supplementary Fig. S2

Chaetocin exerts growth inhibition effect on multiple NSCLC cells. Cell lines H1792, A549, H157, H1650, H460 and Calu-1 were incubated with chaetocin at various concentrations (50, 100, 200 nmol/l) for 24 h (a) and 48 h (b), and then cell survival was estimated using SRB assay. Points mean of four replicate determinations; bars S.D. Based on cell viability measurement in (a), IC50 value of chaetocin for tested cell lines was calculated by IBM SPSS Statistics 19 software (c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Guo, S., Liu, X. et al. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells. Apoptosis 20, 1499–1507 (2015). https://doi.org/10.1007/s10495-015-1167-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1167-4

Keywords

Navigation