Skip to main content

Advertisement

Log in

An indolylquinoline derivative promotes apoptosis in human lung cancer cells by impairing mitochondrial functions

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A number of effective anti-cancer drugs contain either indole or quinoline group. Compounds fused indole and quinoline moieties altogether as indolylquinoline were rarely reported as anti-cancer agents. We reported here that a synthetic indolylquinoline derivative, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), inhibited the growth of human non-small cell lung cancer (NSCLC) cells in dose- and time-dependent manners. The cytotoxicity was mediated through apoptotic cell death that began with mitochondrial membrane potential interruption and DNA damage. EMMQ caused transient elevation of p53 that assists in cytochrome c release, cleavage of downstream PARP and procaspase-3 and mitochondria-related apoptosis. The degree of apoptotic cell death depends on the status of tumor suppressor p53 of the target cells. H1299 cells with stable ectopic expression of p53 induced cytotoxicity by disrupting mitochondria functions that differed with those transfected with mutant p53. Knocking-down of p53 attenuated drug effects. EMMQ suppressed the growth of A549 tumor cells in xenograft tumors by exhibiting apoptosis characteristics. Given its small molecular weight acting as an effective p53 regulator in NSCLC cells, EMMQ could be an addition to the current list of lung cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mariette C, Piessen G, Triboulet JP (2007) Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol 8:545–553

    Article  PubMed  Google Scholar 

  2. Chang A (2011) Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71:3–10

    Article  PubMed  Google Scholar 

  3. Hida T, Ariyoshi Y, Kuwabara M, Sugiura T, Takahashi T, Takahashi T, Hosoda K et al (1993) Glutathione S-transferase pi levels in a panel of lung cancer cell lines and its relation to chemo-radiosensitivity. Jpn J Clin Oncol 23:14–19

    CAS  PubMed  Google Scholar 

  4. Tiseo M, Boni L, Ardizzoni A (2005) Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: does cisplatin versus carboplatin make a difference? J Clin Oncol 23:6276–6277

    Article  PubMed  Google Scholar 

  5. Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R et al (1989) DNA topoisomerase I–targeted chemotherapy of human colon cancer in xenografts. Science 246:1046–1048

    Article  CAS  PubMed  Google Scholar 

  6. Kanzawa F, Sugimoto Y, Minato K, Kasahara K, Bungo M, Nakagawa K, Fujiwara Y et al (1990) Establishment of a camptothecin analogue (CPT-11)-resistant cell line of human non-small cell lung cancer: characterization and mechanism of resistance. Cancer Res 50:5919–5924

    CAS  PubMed  Google Scholar 

  7. Saleem A, Edwards TK, Rasheed Z, Rubin EH (2000) Mechanisms of resistance to camptothecins. Ann NY Acad Sci 922:46–55

    Article  CAS  PubMed  Google Scholar 

  8. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S (2015) A review on anticancer potential of bioactive heterocycle quinoline. Eur J Med Chem 97:871–910

    Article  CAS  PubMed  Google Scholar 

  9. Ding Y, Nguyen TA (2013) PQ1, a quinoline derivative, induces apoptosis in T47D breast cancer cells through activation of caspase-8 and caspase-9. Apoptosis 18:1071–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sedic M, Poznic M, Gehrig P, Scott M, Schlapbach R, Hranjec M, Karminski-Zamola G et al (2008) Differential antiproliferative mechanisms of novel derivative of benzimidazo[1,2-alpha]quinoline in colon cancer cells depending on their p53 status. Mol Cancer Ther 7:2121–2132

    Article  CAS  PubMed  Google Scholar 

  11. Souli E, Machluf M, Morgenstern A, Sabo E, Yannai S (2008) Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food Chem Toxicol 46:863–870

    Article  CAS  PubMed  Google Scholar 

  12. Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chakrabarti G, Basu A, Manna PP, Mahato SB, Mandal NB, Bandyopadhyay S (1999) Indolylquinoline derivatives are cytotoxic to Leishmania donovani promastigotes and amastigotes in vitro and are effective in treating murine visceral leishmaniasis. J Antimicrob Chemother 43:359–366

    Article  CAS  PubMed  Google Scholar 

  14. Pal C, Raha M, Basu A, Roy KC, Gupta A, Ghosh M, Sahu NP et al (2002) Combination therapy with indolylquinoline derivative and sodium antimony gluconate cures established visceral leishmaniasis in hamsters. Antimicrob Agents Chemother 46:259–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ramesh C, Kavala V, Raju BR, Kuo C-W, Yao C-F (2009) Novel synthesis of indolylquinoline derivatives via the C-alkylation of Baylis–Hillman adducts. Tetrahedron Lett 50:4037–4041

    Article  CAS  Google Scholar 

  16. Wang JP, Lin KH, Liu CY, Yu YC, Wu PT, Chiu CC, Su CL et al (2013) Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53. Toxicol Appl Pharmacol 273:110–120

    Article  CAS  PubMed  Google Scholar 

  17. Weng JR, Bai LY, Chiu CF, Wang YC, Tsai MH (2012) The dietary phytochemical 3,3′-diindolylmethane induces G2/M arrest and apoptosis in oral squamous cell carcinoma by modulating Akt-NF-κB, MAPK, and p53 signaling. Chem Biol Interact 195:224–230

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal C, Singh RP, Agarwal R (2002) Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis 23:1869–1876

    Article  CAS  PubMed  Google Scholar 

  19. Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  CAS  PubMed  Google Scholar 

  22. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, Saven JG, Vauthey E et al (2011) An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J 30:2167–2176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Burris HA 3rd (2009) Shortcomings of current therapies for non-small-cell lung cancer: unmet medical needs. Oncogene 28(Suppl 1):S4–S13

    Article  CAS  PubMed  Google Scholar 

  24. Aqil M, Elseth KM, Vesper BJ, Deliu Z, Aydogan B, Xue J, Radosevich JA (2014) Part I-mechanism of adaptation: high nitric oxide adapted A549 cells show enhanced DNA damage response and activation of antiapoptotic pathways. Tumour Biol 35:2403–2415

    Article  PubMed  Google Scholar 

  25. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    Article  CAS  PubMed  Google Scholar 

  26. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674

    Article  CAS  PubMed  Google Scholar 

  27. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis: the p53 network. J Cell Sci 116:4077–4085

    Article  CAS  PubMed  Google Scholar 

  28. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A et al (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  CAS  PubMed  Google Scholar 

  29. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W (2009) Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol Cancer 8:8

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chang C, Zhu YQ, Mei JJ, Liu SQ, Luo J (2010) Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells. J Exp Clin Cancer Res 29:145

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bose P, Thakur S, Thalappilly S, Ahn BY, Satpathy S, Feng X, Suzuki K et al (2013) ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis 4:e788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ji H, Ding Z, Hawke D, Xing D, Jiang BH, Mills GB, Lu Z (2012) AKT-dependent phosphorylation of Niban regulates nucleophosmin- and MDM2-mediated p53 stability and cell apoptosis. EMBO Rep 13:554–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Qian J, Zou Y, Rahman JS, Lu B, Massion PP (2009) Synergy between phosphatidylinositol 3-kinase/Akt pathway and Bcl-xL in the control of apoptosis in adenocarcinoma cells of the lung. Mol Cancer Ther 8:101–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Malki A, Ashry el S (2014) In vitro and in vivo efficacy of a novel quinuclidinone derivative against breast cancer. Anticancer Res 34:1367–1376

    CAS  PubMed  Google Scholar 

  36. Pronier E, Levine RL (2015) IDH1/2 mutations and BCL-2 dependence: an unexpected Chink in AML’s armour. Cancer Cell 27:323–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Grants from National Taiwan Normal University (99D, 103T3040B2 and 104T3040C2). Technical assistance of College of Life Science and Instrumentation Center, National Taiwan University with the confocal laser microscopy is appreciated.

Author Contribution

Chun-Yen Liu and Pei-Tsen Wu designed and performed experiments, discussed and interpreted the data. Jing-Ping Wang, Po-Wei Fan, Chang-Hung Hsieh and JG performed experiments. Ching-Fa Yao provided and purified the tested material. Chun-Li Su and Chien-Chih Chiu gave suggestion on study design, discussed and interpreted the data. Kang Fang designed, supervised study, discussed, interpreted the data and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Chun-Yen Liu and Pei-Tsen Wu have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CY., Wu, PT., Wang, JP. et al. An indolylquinoline derivative promotes apoptosis in human lung cancer cells by impairing mitochondrial functions. Apoptosis 20, 1471–1482 (2015). https://doi.org/10.1007/s10495-015-1165-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1165-6

Keywords

Navigation