Skip to main content

Advertisement

Log in

A monocarbonyl analogue of curcumin, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), exhibits potent growth suppressive activity and enhances the inhibitory effect of curcumin on human prostate cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Prostate carcinoma is one of the leading causes of cancer-related morbidity and mortality in males in western countries. Curcumin exhibits growth-suppressive activity against several cancers, including prostate cancer, but it has poor bioavailability. The purpose of this study was to evaluate the anticancer potency and mechanism of a curcumin analogue, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), in human prostate cancer. Studies were performed in established human prostate cancer cell lines (PC-3 and DU145) as well as in a murine xenograft tumor (PC-3) model. Ca 37 presented a preferential suppression capacity against growth and migration toward prostate cancer cells compared with curcumin. Ca 37 impaired the bioenergetics system, promoted cell cycle arrest and apoptosis activation in PC-3 cells. In addition, 0.5 μmol (6.65 mg/kg body weight) of Ca 37 significantly inhibited the growth of the prostate xenografted tumors, whereas 6 μmol (110 mg/kg body weight) of curcumin had little effect. Furthermore, a combination of Ca 37 and curcumin resulted in enhanced antitumor activity in prostate cancer cells. N-Acetylcysteine abrogated both reactive oxygen species (ROS) production and viability loss induced by Ca 37 but partially prevented growth inhibition in PC-3 cells treated with curcumin alone, or a combination with Ca 37. The data indicate that induction of ROS plays a vital role in the growth inhibitory effect of Ca 37 in PC-3 cells. This study suggests that Ca 37, alone or in combination with curcumin, may be a promising anticancer agent for prostate cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CI:

Combination index

Complex I:

NADH–CoQ oxidoreductase

Complex II:

Succinate–CoQ oxidoreductase

Complex III:

CoQ–cytochrome c reductase

Complex IV:

Cytochrome c oxidase

DCIP:

2,6-Dichlorobenzenone–indophenol

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

ROS:

Reactive oxygen species

GSH:

Reduced glutathione

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

INT:

2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride

α-KGDH:

α-Ketoglutarate dehydrogenase complex

LA:

Lactic acid

LDH:

Lactate dehydrogenase

MDH:

Malate dehydrogenase

NAC:

N-Acetylcysteine

NBT:

Nitroblue tetrazolium

PARP:

Poly(ADP-ribose) polymerase

PI:

Propidium iodide

PMS:

Phenazine methosulfate

RNase A:

Ribonuclease A

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29

    Article  PubMed  Google Scholar 

  2. Teiten MH, Gaascht F, Eifes S, Dicato M, Diederich M (2010) Chemopreventive potential of curcumin in prostate cancer. Genes Nutr 5(1):61–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5(11):876–885

    Article  CAS  PubMed  Google Scholar 

  4. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9(1):49–89

    Article  CAS  PubMed  Google Scholar 

  5. Shankar S, Srivastava RK (2007) Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 30(4):905–918

    CAS  PubMed  Google Scholar 

  6. Hilchie AL, Furlong SJ, Sutton K, Richardson A, Robichaud MR, Giacomantonio CA, Ridgway ND, Hoskin DW (2010) Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria. Nutr Cancer 62(3):379–389

    Article  CAS  PubMed  Google Scholar 

  7. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  PubMed  Google Scholar 

  8. Agrawal DK, Mishra PK (2010) Curcumin and its analogues: potential anticancer agents. Med Res Rev 30(5):818–860

    CAS  PubMed  Google Scholar 

  9. Lee JW, Hong HM, Kwon DD, Pae HO, Jeong HJ (2010) Dimethoxycurcumin, a structural analogue of curcumin, induces apoptosis in human renal carcinoma caki cells through the production of reactive oxygen species, the release of cytochrome C, and the activation of caspase-3. Korean J Urol 51(12):870–878

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wu CL, Liao YF, Hung YC, Lu KH, Hung HC, Liu GY (2011) Ornithine decarboxylase prevents dibenzoylmethane-induced apoptosis through repressing reactive oxygen species generation. J Biochem Mol Toxicol 25(5):312–319

    Article  CAS  PubMed  Google Scholar 

  11. Fajardo AM, MacKenzie DA, Ji M, Deck LM, Vander Jagt DL, Thompson TA, Bisoffi M (2012) The curcumin analog ca27 down-regulates androgen receptor through an oxidative stress mediated mechanism in human prostate cancer cells. Prostate 72(6):612–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander Jagt DL (2005) Anti-oxidant activities of curcumin and related enones. Bioorg Med Chem 13(11):3811–3820

    Article  CAS  PubMed  Google Scholar 

  13. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, Hollingshead MG, Kaur G, Sausville EA, Rickles FR, Snyder JP, Liotta DC, Shoji M (2004) Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem 12(14):3871–3883

    Article  CAS  PubMed  Google Scholar 

  14. Saotome K, Morita H, Umeda M (1989) Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro 3(4):317–321

    Article  CAS  PubMed  Google Scholar 

  15. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    Article  CAS  PubMed  Google Scholar 

  16. Luo C, Wang X, Long J, Liu J (2006) An NADH-tetrazolium-coupled sensitive assay for malate dehydrogenase in mitochondria and crude tissue homogenates. J Biochem Biophys Methods 68(2):101–111

    Article  CAS  PubMed  Google Scholar 

  17. Janssen AJ, Trijbels FJ, Sengers RC, Smeitink JA, van den Heuvel LP, Wintjes LT, Stoltenborg-Hogenkamp BJ, Rodenburg RJ (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53(4):729–734

    Article  CAS  PubMed  Google Scholar 

  18. Hatefi Y, Stiggall DL (1978) Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods Enzymol 53:21–27

    Article  CAS  PubMed  Google Scholar 

  19. Luo C, Long J, Liu J (2008) An improved spectrophotometric method for a more specific and accurate assay of mitochondrial complex III activity. Clin Chim Acta 395(1–2):38–41

    Article  CAS  PubMed  Google Scholar 

  20. Errede B, Kamen MD, Hatefi Y (1978) Preparation and properties of complex IV (ferrocytochrome c: oxygen oxidoreductase EC 1.9.3.1). Methods Enzymol 53:40–47

    Article  CAS  PubMed  Google Scholar 

  21. Humphries KM, Szweda LI (1998) Selective inactivation of α-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 37(45):15835–15841

    Article  CAS  PubMed  Google Scholar 

  22. Khor TO, Keum YS, Lin W, Kim JH, Hu R, Shen G, Xu C, Gopalakrishnan A, Reddy B, Zheng X, Conney AH, Kong AN (2006) Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res 66(2):613–621

    Article  CAS  PubMed  Google Scholar 

  23. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19(8):1893–1907

    Article  PubMed  Google Scholar 

  24. Kimura T (2012) East meets West: ethnic differences in prostate cancer epidemiology between East Asians and Caucasians. Chin J Cancer 31(9):421–429

    Article  CAS  PubMed  Google Scholar 

  25. Wolk A (2005) Diet, lifestyle and risk of prostate cancer. Acta Oncol 44(3):277–281

    Article  PubMed  Google Scholar 

  26. Liu Y, Fuchs J, Li C, Lin J (2010) IL-6, a risk factor for hepatocellular carcinoma: FLLL32 inhibits IL-6-induced STAT3 phosphorylation in human hepatocellular cancer cells. Cell Cycle 9(17):3423–3427

    Article  CAS  PubMed  Google Scholar 

  27. Liu A, Liu Y, Li PK, Li C, Lin J (2011) LLL12 inhibits endogenous and exogenous interleukin-6-induced STAT3 phosphorylation in human pancreatic cancer cells. Anticancer Res 31(6):2029–2035

    CAS  PubMed  Google Scholar 

  28. Ball S, Li C, Li PK, Lin J (2011) The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells. PLoS ONE 6(4):e18820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Friedman L, Lin L, Ball S, Bekaii-Saab T, Fuchs J, Li PK, Li C, Lin J (2009) Curcumin analogues exhibit enhanced growth suppressive activity in human pancreatic cancer cells. Anticancer Drug 20(6):444–449

    Article  CAS  Google Scholar 

  30. Lin L, Hutzen B, Ball S, Foust E, Sobo M, Deangelis S, Pandit B, Friedman L, Li C, Li PK, Fuchs J, Lin J (2009) New curcumin analogues exhibit enhanced growth-suppressive activity and inhibit AKT and signal transducer and activator of transcription 3 phosphorylation in breast and prostate cancer cells. Cancer Sci 100(9):1719–1727

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Xiao J, Zhou H, Yang S, Wu X, Jiang C, Zhao Y, Liang D, Li X, Liang G (2011) A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J Med Chem 54(11):3768–3778

    Article  CAS  PubMed  Google Scholar 

  32. Xiao J, Wang Y, Peng J, Guo L, Hu J, Cao M, Zhang X, Zhang H, Wang Z, Li X, Yang S, Yang H, Liang G (2012) A synthetic compound, 1,5-bis(2-methoxyphenyl)penta- 1,4-dien-3-one (B63), induces apoptosis and activates endoplasmic reticulum stress in non-small cell lung cancer cells. Int J Cancer 131(6):1455–1465

    Article  CAS  PubMed  Google Scholar 

  33. Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, Zhao Y, Li X, Yang S (2009) Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem 17(6):2623–2631

    Article  CAS  PubMed  Google Scholar 

  34. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  35. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    Article  CAS  PubMed  Google Scholar 

  36. Wagner BA, Evig CB, Reszka KJ, Buettner GR, Burns CP (2005) Doxorubicin increases intracellular hydrogen peroxide in PC3 prostate cancer cells. Arch Biochem Biophys 440(2):181–190

    Article  CAS  PubMed  Google Scholar 

  37. Miyajima A, Nakashima J, Yoshioka K, Tachibana M, Tazaki H, Murai M (1997) Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br J Cancer 76(2):206–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Natural Science Foundation of China, Key Program 30930105, Foundation of Xi’an Jiaotong University, New Century Excellent Talents in University, the National Natural Science Foundation of China (Grant No. 31070740), and the 985 and 211 Projects of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, C., Li, Y., Zhou, B. et al. A monocarbonyl analogue of curcumin, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), exhibits potent growth suppressive activity and enhances the inhibitory effect of curcumin on human prostate cancer cells. Apoptosis 19, 542–553 (2014). https://doi.org/10.1007/s10495-013-0947-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0947-y

Keywords

Navigation