, Volume 19, Issue 4, pp 567-580
Date: 19 Nov 2013

Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

12/15-Lipoxygenase (LOX) is a member of the LOX family that catalyzes the step from arachidonic acid to hydroxy-eicosatetraenoic acids (HETEs). Previous studies demonstrated that 12/15-LOX plays a critical role in the development of atherosclerosis, hypertension, heart failure, and other diseases; however, its role in myocardial ischemic injury was contraversal. Here, we investigated the inhibition of 12/15-LOX by baicalein on acute cardiac injury and dissected its molecular mechanism. In a mouse model of acute ischemia/reperfusion (I/R) injury, 12/15-LOX was significantly upregulated in the peri-infarct area surrounding the primary infarction. In cultured cardiac myocytes, baicalein suppressed apoptosis and caspase 3 activity in response to simulated ischemia/reperfusion (I/R). Moreover, administration of 12/15-LOX inhibitor, baicalein, significantly attenuated myocardial infarct size induced by I/R injury. Moreover, baicalein treatment significantly inhibited cardiomyocyte apoptosis, inflammatory responses and oxidative stress in the heart after I/R injury. The mechanisms underlying these effects were associated with the activation of ERK1/2 and AKT pathways and inhibition of activation of p38 MAPK, JNK1/2, and NF-kB/p65 pathways in the I/R-treated hearts and neonatal cardiomyoctes. Our data indicated that 12/15-LOX inhibitor baicalein can prevent myocardial I/R injury by modulation of multiple mechanisms, and suggest that baicalein could represent a novel therapeutic drug for acute myocardial infarction.