, Volume 11, Issue 12, pp 2167-2177
Date: 17 Oct 2006

Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Aristolochic acid (AA) has been demonstrated to play a causal role in Chinese herbs nephropathy. However, the detailed mechanism for AA to induce apoptosis of renal tubular cells remains obscure. In this study, we show that AA evokes a rapid rise in the intracellular Ca2+ concentration of renal tubular cells through release of intracellular endoplasmic reticulum Ca2+ stores and influx of extracellular Ca2+, which in turn causes endoplasmic reticulum stress and mitochondria stress, resulting in activation of caspases and finally apoptosis. Ca2+ antagonists, including calbindin-D28k (an intracellular Ca2+ buffering protein) and BAPTA-AM (a cell-permeable Ca2+ chelator), are capable of ameliorating endoplasmic reticulum stress and mitochondria stress, and thereby enhance the resistance of the cells to AA. Moreover, we show that overexpression of the anti-apoptotic protein Bcl-2 in combination with BAPTA-AM treatment can provide renal tubular cells with almost full protection against AA-induced cytotoxicity. In conclusion, our results demonstrate an impact of AA to intracellular Ca2+ concentration and its link with AA-induced cytotoxicity.

Yi-Hong Hsin and Chi-Hung Cheng are equally contributed to this work.