Skip to main content
Log in

Numerical Simulation of Non-premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Numerical simulations of the Sandia flame CHNa and the Sydney bluff-body stabilized flame HM1E are reported and the results are compared to available experimental data. The numerical method is based on compressible URANS formulations which were implemented recently in the OpenFOAM toolbox. In this study, the calculations are carried out using the conventional compressible URANS approach and a standard k- 𝜖 turbulence model. The Eddy Dissipation Concept with a detailed chemistry approach is used for the turbulence-chemistry interaction. The syngas (CO/H2) chemistry diluted by 30 % nitrogen in the Sandia flame CHNa and CH4/H2 combustion in the Sydney flame HM1E are described by the full GRI-3.0 mechanism. A robust implicit Runge-Kutta method (RADAU5) is used for integrating stiff ordinary differential equations to calculate the reaction rates. The radiation is treated by the P1-approximation model. Both target flames are predicted with the Steady Laminar Flamelet model using the commercial code ANSYS FLUENT as well. In general, there is good agreement between present simulations and measurements for both flames, which indicates that the proposed numerical method is suitable for this type of combustion, provides acceptable accuracy and is ready for further combustion application development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ANSYS FLUENT R12: Theory guide. Tech. rep. (2009). Ansys Inc.

  2. Barlow, R.S., Frank, J.H.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Article  Google Scholar 

  3. Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)

    Article  Google Scholar 

  4. Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M., Goldenberg, M.: GRI-Mech (2008). Accessed February 2013 http://www.me.berkeley.edu/gri-mech/

  5. Chase, M.: NIST-JANAF Thermochemical tables. J. Phys. Chem. Ref. Data, Monogr. Suppl. (1998)

  6. Cheng, P.: Dynamics of a radiating gas with application to flow over a wavy wall. AIAA J. 4, 238–245 (1966)

    Article  Google Scholar 

  7. Chomiak, J., Karlsson, A.: Flame liftoff in diesel sprays. In: Proceedings of 26th International Symposium on Combustion, pp. 2557–2564 (1996)

  8. Cuoci, A., Frassoldati, A., Ferraris, G., Buzzi, Faravelli, T., Ranzi, E.: The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2: Fluid dynamics and kinetic aspects of syngas combustion. Int. J. Hydrog. Energy 32, 3486–3500 (2007)

    Article  Google Scholar 

  9. Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff- body stabilised nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  10. Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007)

    Article  Google Scholar 

  11. Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32, 1779–1786 (2009)

    Article  Google Scholar 

  12. Fox, R.O.: Computational models for turbulent reacting flows. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  13. Frank, J.H., Barlow, R.S., Lundquist, C.: Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Comb. Inst 28, 447–454 (2000)

    Article  Google Scholar 

  14. Frassoldati, A., Faravelli, T., Ranzi, E: The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int. J. Hydroge. Energy 32, 3471–3485 (2007)

    Article  Google Scholar 

  15. Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Combust. Sci. Technol. 159, 213–235 (2000)

    Article  Google Scholar 

  16. Geurts, B.: Elements of direct and large-eddy simulation. R.T. Edwards, Philadelphia (2004)

  17. Gran, I.R., Magnussen, B.F.: A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119, 191–217 (1996)

    Article  Google Scholar 

  18. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd ed. Springer Series in Computational Mathematics. Springer-Verlag (1996)

  19. Hestens, M, Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Nat. Bur. Stand 29, 409–436 (1952)

    Article  Google Scholar 

  20. Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Model. 5, 669–897 (2001)

    Article  MATH  Google Scholar 

  21. Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-Body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67, 217–234 (2001)

    Article  MATH  Google Scholar 

  22. Hottel, H.C, Sarofim, A.F.: Radiative Transfer. McGraw-Hill, New York (1967)

  23. Hutchinson, B., Raithby, G.: A multigrid method based on the additive correction strategy. J. Numer. Heat Transfer 9, 37–511 (1986)

    Google Scholar 

  24. Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jones, W.P., Whitelaw, J.H.: Calculation methods for reacting turbulent flows: a review, Combust. Flame 48, 1–26 (1982)

    Article  Google Scholar 

  26. Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Tran. 1, 131–138 (1974)

    Google Scholar 

  27. Launder, B.E., Spalding, D.B: The numerical computation of turbulent flows. Comput. Method Appl. M. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  28. Leonard, B.P., Mokhtari, S.: ULTRA-SHARP Nonoscillatory convection schemes for high-speed steady multidimensional flow, NASA TM 1-2568 (ICOMP-90-12) NASA Lewis Research Center (1990)

  29. Lilleberg, B., Christ, D., Ertesvåg, I.S., Rian, K.E., Kneer, R.: Numerical simulation with an extinction database for use with the Eddy Dissipation Concept for turbulent combustion. Flow Turbul. Combust. 91, 319–346 (2013)

    Article  Google Scholar 

  30. Liu, K., Pope, S.B., Caughey, D.A.: Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry. Combust. Flame 141, 89–117 (2005)

    Article  Google Scholar 

  31. Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids 80, 408–422 (2013)

    Article  MATH  Google Scholar 

  32. Magnussen, B.F., Hjertager, B.H: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)

    Article  Google Scholar 

  33. Magnussen, B.F.: Modeling of NOx and soot formation by the Eddy Dissipation Concept. Int.Flame Research Foundation, 1st topic Oriented Technical Meeting., 17-19 Oct., Amsterdam, Holland (1989)

  34. Magnussen, B.F: The Eddy Dissipation Concept a bridge between science and technology, ECCOMAS Thermal Conference on Computational Combustion, Lisbon, Portugal, 21-24 June (2005)

  35. Marshak, R.E.: Note on the spherical harmonics method as applied to the Milne problem for a sphere. Phys. Rev. 71, 443–446 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  36. Marzouk, O.A., Huckaby, E.D.: A comparative study of eight finite-rate chemistry kinetics for CO/H2 combustion. Eng. App. Comput. Fluid Mech. 4, 331–356 (2010)

    Google Scholar 

  37. Meijerink, J.A., Van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148–162 (1977)

    MATH  MathSciNet  Google Scholar 

  38. McGuirk, J.J., Rodi, W. In: Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.): The calculation of three-dimensional turbulent free jets. In turbulent Shear Flows I: Selected papers from the First International Symposium on Turbulent Shear Flows, pp 71–83. Springer-Verlag, Germany (1979)

  39. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  40. Menter, F., Esch, T.: Elements of industrial heat transfer prediction, 16th Brazilian Congress of Mechanical Engineering (COBEM) (2001)

  41. Merci, B., Naud, B., Roekaerts, D.: Impact of turbulent flow and mean mixture fraction results on mixing model behavior in transported scalar PDF simulations of turbulent non-premixed bluff body flames. Flow Turbul. Combust. 79, 41–53 (2007)

    Article  MATH  Google Scholar 

  42. Merci, B., Naud, B., Roekaerts, D., Maas, U.: Joint scalar versus joint velocity-scalar PDF simulations of bluff-body stabilized flames with REDIM. Flow Turbul. Combust. 82, 185–209 (2009)

    Article  MATH  Google Scholar 

  43. Peters, N.: Laminar diffusion flamelet models in non premixed combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  44. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  45. Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Comb. Flame 114, 26–40 (1998)

    Article  Google Scholar 

  46. Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)

    Article  Google Scholar 

  47. Pope, S.B.: An explanation of the turbulent round-jef/plane-jet anomaly. AIAA J. 16, 279–281 (1978)

    Article  Google Scholar 

  48. Raithby, G.D., Chui, E.H.: A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. J. Heat Transfer 122, 415–423 (1990)

    Article  Google Scholar 

  49. Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion. J. Comb. Flame 143, 56–78 (2005)

    Article  Google Scholar 

  50. Richardson, L.F.: Weather prediction by numerical process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  51. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 32–1525 (1983)

    Google Scholar 

  52. Sabelnikov, V., Fureby, C.: LES combustion modeling for high Re flames using a multi-phase analogy, Combust. Flame, 160, pp 83–96 (2013)

  53. Shih, T.-H., Liou, W., Shabbir, A., Yang, Z., Zhu, J.: A new k- 𝜖 eddy-viscosity model for high Reynolds number turbulent flows model development and validation. Comput. Fluids 24, 22738 (1995)

    Article  Google Scholar 

  54. Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Trans-T. ASME 104, 602–608 (1982)

    Article  Google Scholar 

  55. Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th ed. Springer. Berlin Heidelberg, New York (2006)

    Google Scholar 

  56. Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes – a unified approach. J. Comput. Phys. 224, 182–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. J. Comp. Phys. 12, 620–631 (1998)

    Article  Google Scholar 

  58. Williams, F.A.: Turbulent mixing in non-reactive and reactive flows (S.N.B. Muurthy, ed.), p. 189, Plenum (1975)

  59. Yan, J., Thiele, F., Buffat, M.: A turbulence model sensitivity study for CH4/H2 bluff-body stabilized flames. Flow Turb. Combust. 73, 1–24 (2004)

    Article  MATH  Google Scholar 

  60. Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163 (1984)

    Google Scholar 

  61. Zahirovic, S., Scharler, R., Kilpinen, P., Obernberger, I.: Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces. Combust. Theory Model. 15, 61–87 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Lysenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, D.A., Ertesvåg, I.S. & Rian, K.E. Numerical Simulation of Non-premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model. Flow Turbulence Combust 93, 577–605 (2014). https://doi.org/10.1007/s10494-014-9551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9551-7

Keywords

Navigation