Skip to main content

Advertisement

Log in

Thin Shear Layer Structures in High Reynolds Number Turbulence

Tomographic Experiments and a Local Distortion Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Three-dimensional tomographic time dependent PIV measurements of high Reynolds number (Re) laboratory turbulence are presented which show the existence of long-lived, highly sheared thin layer eddy structures with thickness of the order of the Taylor microscale and internal fluctuations. Highly sheared layer structures are also observed in direct numerical simulations of homogeneous turbulence at higher values of Re (Ishihara et al., Annu Rev Fluid Mech 41:165–180, 2009). But in the latter simulation, where the fluctuations are more intense, the layer thickness is greater. A rapid distortion model describes the structure and spectra for the velocity fluctuations outside and within ‘significant’ layers; their spectra are similar to the Kolmogorov (C R Acad Sci URSS 30:299–303, 1941) and Obukhov (Dokl Akad Nauk SSSR 32:22–24, 1941) statistical model (KO) for the whole flow. As larger-scale eddy motions are blocked by the shear layers, they distort smaller-scale eddies leading to local zones of down-scale and up-scale transfer of energy. Thence the energy spectrum for high wave number k is \(E_X (k)\sim Bk^{-2p}\). The exponent p depends on the forms of the large eddies. The non-linear interactions between the distorted inhomogeneous eddies produce a steady local structure, which implies that 2p = 5/3 and a flux of energy into the thin-layers balancing the intense dissipation, which is much greater than the mean \(\left<\epsilon\right>\). Thence \(B\sim\left<\epsilon\right>^{2/3}\) as in KO. Within the thin layers the inward flux energises extended vortices whose thickness and spacing are comparable with the viscous microscale. Although peak values of vorticity and velocity of these vortices greatly exceed those based on the KO scaling, the form of the viscous range spectrum is consistent with their model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165–180 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ishihara, T., Kaneda, Y., Hunt, J.C.R.: Thin shear layers in high Reynolds number turbulence—DNS results (2013). doi:10.1007/s10494-013-9499-z

  3. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large reynolds number. C. R. Acad. Sci. URSS 30, 299–303 (1941)

    Google Scholar 

  4. Obukhov, A.M.: Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 22–24 (1941)

    Google Scholar 

  5. Cadot, O., Douady, S., Couder, Y.: Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow. Phys. Fluids 7(3), 630–646 (1995)

    Article  Google Scholar 

  6. Voth, G.A., Porta, A.L., Crawford, A.M., Alexander, J., Bodenschatz, E.: Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160 (2002)

    Article  MATH  Google Scholar 

  7. Porta, A.L., Voth, G.A., Moisy, F., Bodenschatz, E.: Using cavitation to measure statistics of low-pressure events in large-reynolds-number turbulence. Phys. Fluids 12, 1485–1496 (2000)

    Article  MATH  Google Scholar 

  8. Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230 (2009)

    Article  MATH  Google Scholar 

  9. Braza, M., Perrina, R., Hoarau, Y.: Turbulence properties in the cylinder wake at high reynolds numbers. J. Fluids Struct. 22, 757–771 (2006)

    Article  Google Scholar 

  10. Bisset, D.K., Hunt, J.C.R., Rogers, M.M.: The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383–410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ganapathisubramani, B., Lakshminarasimhan, K., Clemens, N.T.: Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141–175 (2008)

    Article  MATH  Google Scholar 

  12. Moisy, F., Jiménez, J.: Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111–133 (2004)

    Article  MATH  Google Scholar 

  13. Ruetsch, G., Maxey, M.: The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids A 4, 2747–2766 (1992)

    Article  Google Scholar 

  14. Dritschel, D.G., Haynes, P.H., Juckes, M.N., Shepherd, T.G.: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech. 230, 647–665 (1991)

    Article  MATH  Google Scholar 

  15. Hunt, J., Eames, I., Westerweel, J.: Vortical interactions with interfacial shear layers. In: Kaneda, Y. (ed.) Proceedings of IUTAM Conference on Computational Physics and New Perspectives in Turbulence, pp. 331–338. Springer (2008)

  16. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press (1976)

  17. Kida, S., Hunt, J.: Interaction between different scales of turbulence over short times. J. Fluid Mech. 201, 411–445 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hussain, A.K.M.F., Reynolds, W.C.: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41(2), 241–258 (1970)

    Article  Google Scholar 

  19. Hunt, J.C.R., Durbin, P.A.: Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24, 375–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hunt, J.: Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech. 138, 161–184 (1984)

    Article  MATH  Google Scholar 

  21. Hunt, J.: A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61(4), 625–706 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lundgren, T.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21–93 (1982)

    Article  Google Scholar 

  23. Horiuti, K., Ozawa, T.: Multi-mode stretched spiral vortex and nonequilibrium energy spectrum in homogeneous shear flow turbulence. Phys. Fluids 23, 035107 (2011)

    Article  Google Scholar 

  24. Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E.J., Frisch, U.: Wavelet analysis of turbulence reveals the multifractal nature of the richardson cascade. Nature 338, 51–53 (1989)

    Article  Google Scholar 

  25. Elsinga, G.E., Marusic, I.: Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514–539 (2010)

    Article  MATH  Google Scholar 

  26. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press (1922)

  27. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926)

    Article  Google Scholar 

  28. Jones, J.G., Watson, G.H., Foster, G.W.: Non-gaussian statistics of atmospheric turbulence and related effects on aircraft loads. AIAA J. 42, 2438–2447 (2004)

    Article  Google Scholar 

  29. Tsinober, A.: Vortex stretching versus production of strain/dissipation. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Proc. Conf at INI. Cambridge on Vortex Dynamics and Turbulence, pp. 164–191. Cambridge University Press (2000)

  30. Corrsin, S., Kistler, A.: Free-stream boundaries of turbulent flows. NACA Tech. Rep. 1244, pp. 1033–1064 (1955)

  31. Holzner, M., Liberzon, A., Nilkitin, N., Luhti, B., Kinzelbach, W., Tsinober, A.: Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys. Fluids 19, 71702 (2007)

    Article  Google Scholar 

  32. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press (1996)

  33. Hussain, A.K.M.F.: Coherent structures and turbulence. J. Fluid Mech. 173, 303–356 (1986)

    Article  Google Scholar 

  34. Bonnet, J.P., Glauser, M.N.: Eddy Structure Identification in Free Turbulent Shear Flows. Kluwer Academic Press (1993)

  35. Hunt, J.: Dynamics and statistics of vortical eddies in turbulence. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics, pp. 192–243. Cambridge University Press (2000)

  36. Kraichnan, R.H.: On kolmogorov’s inertial-range theories. J. Fluid Mech. 62(2), 305–330 (1974)

    Article  MATH  Google Scholar 

  37. Mydlarski, L., Pumir, A., Shraiman, B.I., Siggia, E.D., Warhaft, Z.: Structures and multipoint correlators for turbulent advection: Predictions and experiments. Phys. Rev. Lett. 81, 4373–4376 (1998)

    Article  Google Scholar 

  38. Domaradzki, J.A., Liu, W., Brachet, M.E.: An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids A 5, 1747–1749 (1993)

    Article  MATH  Google Scholar 

  39. Gotoh, T., Watanabe, T.: Statistics of transfer fluxes of the kinetic energy and scalar variance. J. Turbul. 6, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  40. Aoyama, T., Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A.: Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box. J. Phys. Soc. Jpn. 74, 3202–3212 (2005)

    Article  MATH  Google Scholar 

  41. Ooms, G., Boersma, B., Pourquie, M.: Numerical simulation of the spectral development of inviscid helical flows. Eur. J. Mech. B-Fluids 30, 428–436 (2011)

    Article  MATH  Google Scholar 

  42. Wyngaard, J.C.: Turbulence in the Atmosphere. Cambridge University Press (2010)

  43. Sreenivasan, K.R.: On local isotropy of passive scalars in turbulent shear flows. Proc. Roy. Soc. A 434, 165–182 (1991)

    Article  MATH  Google Scholar 

  44. Zocchi, G., Tabeling, P., Maurer, J., Willaime, H.: Measurement of the scaling of the dissipation at high reynolds numbers. Phys. Rev. E 50, 3693–3700 (1994)

    Article  Google Scholar 

  45. Belin, F., Maurer, J., Tabeling, P., Willaime, H.: Velocity gradient distributions in fully developed turbulence: An experimental study. Phys. Fluids 9(12), 3843–3850 (1997)

    Article  Google Scholar 

  46. Worth, N.A., Nickels, T.B., Swaminathan, N.: A tomographic piv resolution study based on homogeneous isotropic turbulence dns data. Exp. Fluids 49, 637–656 (2010)

    Article  Google Scholar 

  47. Sreenivasan, K.R.: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10(2), 528–529 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Worth, N.: Tomographic-piv measurement of coherent dissipation scale structures. Ph.D. thesis, University of Cambridge (2010)

  49. Sreenivasan, K.R.: On the universality of the kolmogorov constant. Phys. Fluids 7(11), 2778–2784 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  50. Gotoh, T., Fukayama, D., Nakano, T.: Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14(3), 1065–1081 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Worth, N.A., Nickels, T.B.: Some characteristics of thin shear layers in homogeneous turbulent flow. Phil. Trans. R. Soc. A 369, 709–722 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Miyazaki, T., Hunt, J.: Linear and nonlinear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349–378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Verzicco, R., Jiménez, J., Orlandi, P.: On steady columnar vortices under local compression. J. Fluid Mech. 299, 367–388 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  54. Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  55. Kevlahan, N., Hunt, J.C.R., Vassilicos, J.C.: A comparison of different analytical techniques for identifying structures in turbulence. Appl. Sci. Res. 53, 339–355 (1994)

    Article  MATH  Google Scholar 

  56. Kevlahan, N., Hunt, J.: Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech. 337, 333–364 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  57. Hunt, J., Vassilicos, J.: Kolmogorov’s contributions to the physical and geometrical understanding of small-scale turbulence and recent developments. Proc. Roy. Soc. A 434, 183–210 (1991)

    Article  MATH  Google Scholar 

  58. Hunt, J.: Developments in computational modelling of turbulent flows. In: Pironneau, O., Rodi, W., Rhyming, I.L., Savill, A.M., Truong, T.V. (eds.) ERCOFTAC Workshop on Numerical Simulation of Unsteady Flows and Transition to Turbulence, pp. 1–76. Cambridge Univ. Press (1992)

  59. George, W.K.: The decay of homogenous isotropic turbulence. Phys. Fluids A 4, 1492–1509 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  60. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press (1987)

  61. Betchov, R.: An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497–504 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  62. Hunt, J.C.R., Delfos, R., Eames, I., Perkins, R.J.: Vortices, complex flows and inertial particles. Flow Turbulence Combust. 79(3), 207–234 (2007)

    Article  MATH  Google Scholar 

  63. Batchelor, G.K., Townsend, A.A.: The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. London A 199, 238–255 (1949)

    Article  MATH  Google Scholar 

  64. Verzicco, R., Jiménez, J.: On the survival of nonuniform vortex filaments in model turbulence. J. Fluid Mech. 394, 261–279 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  65. Britter, R., Hunt, J., Mumford, J.C.: The distortion of turbulence by a circular cylinder. J. Fluid Mech. 92(2), 269–301 (1979)

    Article  Google Scholar 

  66. Jacobs, R.G., Durbin, P.A.: Shear sheltering and the continuous spectrum of the orrsommerfeld equation. Phys. Fluids 10(8), 2006–2011 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  67. Chu, C.C., Falco, R.E.: Vortex ring/viscous wall layer interaction model of turbulence production process near walls. Exp. Fluids 6, 305–315 (1988)

    Article  Google Scholar 

  68. Porta, A.L., Voth, G.A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)

    Article  Google Scholar 

  69. Zaki, T., Saha, S.: On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111–147 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  70. Zilitinkevich, S., Hunt, J., Esau, I., Grachev, A., Lalas, D., Akylas, E., Mombrou, M., Fairall, C., Fernando, H.S., Baklanov, A.A., Joffre, S.M.: The influence of large convective eddies on the surface-layer turbulence. Q. J. R. Meteorol. Soc. 132, 1423–1456 (2006)

    Article  Google Scholar 

  71. da Silva, C.B., dos Reis, R.: The role of coherent vortices near the turbulent/nonturbulent interface in a planar jet. Phil. Trans. R. Soc. A 369, 738–753 (2011)

    Article  MATH  Google Scholar 

  72. Sadeh, W.Z., Sutera, S., Maeder, P.: An investigation of vorticity amplification in stagnation flow. Z. Angew. Math. Phys. 21, 717–742 (1970)

    Article  Google Scholar 

  73. Hunt, J., Carruthers, D.J.: Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497–532 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  74. Farge, M., Hunt, J.C.R., Vassilicos, J.C.: Wavelets, Fractals, and Fourier Transforms. Clarendon Press (1993)

  75. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  76. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press (1972)

  77. Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A.: Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335–366 (2007)

    Article  MATH  Google Scholar 

  78. Hunt, J., Moin, P., Lee, M., Moser, R., Spalart, P., Mansour, N., Kaimal, J., Gaynor, E.: Cross correlation and length scales in turbulent flows near surfaces. In: Advances in Turbulence 2 (2nd European Turbulence Conf., Berlin, August 1988), pp. 128–134. Springer-Verlag (1989)

  79. Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141–168 (1994)

    Article  MATH  Google Scholar 

  80. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  81. Bourguet, R., Braza, M., Perrin, R., Harran, G.: Anisotropic eddy-viscosity concept for strongly detached unsteady flows. AIAA J. 45, 1145–1149 (2007)

    Article  Google Scholar 

  82. Wu, X., Jacobs, R., Hunt, J., Durbin, P.A.: Simulation of boundary layer transition induced by periodically passing wakes. J. Fluid Mech. 398, 109–153 (1999)

    Article  MATH  Google Scholar 

  83. Lee, M.J., Kim, J., Moin, P.: Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561–583 (1990)

    Article  Google Scholar 

  84. Savill, A.M.: Recent developments in rapid-distortion theory. Annu. Rev. Fluid Mech. 19, 531–575 (1987)

    Article  Google Scholar 

  85. Hanazaki, H., Hunt, J.: Structure of unsteady stably stratified turbulence with mean shear. J. Fluid Mech. 507, 1–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  86. She, Z.S., Jackson, E.: On the universal form of energy spectra in fully developed turbulence. Phys. Fluids A 5(7), 1526–1528 (1993)

    Article  Google Scholar 

  87. Perry, A.E., Abell, C.J.: Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67(2), 257–271 (1975)

    Article  Google Scholar 

  88. Hogstrom, U., Hunt, J., Smedman, A.S.: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteorol. 103, 101–124 (2002)

    Article  Google Scholar 

  89. Moser, R.D., Rogers, M.M.: Mixing transition and the cascade to small scales in a plane mixing layer. Phys. Fluids A 3(5), 1128–1134 (1991)

    Article  Google Scholar 

  90. Hunt, J.C.R., Phillips, O.M., Williams, D.: Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on. Proc. Roy. Soc. London A 434, 1–240 (1991)

    MathSciNet  Google Scholar 

  91. Hunt, J., Kaimal, J.C., Gaynor, J.E.: Eddy structure in the convective boundary layer–new measurements and new concepts. Q. J. R. Meteorol. Soc. 114, 827–858 (1988)

    Google Scholar 

  92. Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  93. Warhaft, Z.: Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32, 203–240 (2000)

    Article  MathSciNet  Google Scholar 

  94. Ruelle, D.: Is there screening in turbulence? J. Stat. Phys. 61, 865–868 (1990)

    Article  MathSciNet  Google Scholar 

  95. Ishida, T., Davidson, P.A., Kaneda, Y.: On the decay of isotropic turbulence. J. Fluid Mech. 564, 455–475 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  96. Davidson, P.A.: Long-range interactions in turbulence and the energy decay problem. Phil. Trans. R. Soc. A 369, 796–810 (2011)

    Article  MATH  Google Scholar 

  97. Hunt, J., Sandham, N., Vassilicos, J., Launder, B., Monkewitz, P., Hewitt, G.: Developments in turbulence research: a review based on the 1999 programme of the Isaac Newton Institute, Cambridge. J. Fluid Mech. 436, 353–391 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  98. Hancock, P.E., Bradshaw, P.: Turbulence structure of a boundary layer beneath a turbulent free stream. J. Fluid Mech. 205, 45–76 (1989)

    Article  Google Scholar 

  99. Douady, S., Couder, Y., Brachet, M.E.: Direct observation of the intermitency of intense vorticity filaments. Phys. Rev. Lett. 67, 983–986 (1991)

    Article  Google Scholar 

  100. Sene, K.J., Thomas, N.H., Hunt, J.C.R.: The role of coherent structures in bubble transport by turbulent shear flows. J. Fluid Mech. 259, 219–240 (1994)

    Article  Google Scholar 

  101. Hunt, J.: Turbulent diffusion from sources in complex flows. Annu. Rev. Fluid Mech. 17, 447–485 (1985)

    Article  Google Scholar 

  102. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  103. Gibson, C.H.: Kolmogorov similarity hypotheses for scalar fields: Sampling intermittent turbulent mixing in the ocean and galaxy. Proc. Roy. Soc. London A 434, 149–164 (1991)

    Article  MATH  Google Scholar 

  104. Hunt, J., Eames, I., Westerweel, J., Davidson, P.A., Voropayev, S., Fernando, J., Braza, M.: Thin shear layers - the key to turbulence structure? J. Hydro Environ. Res. 4, 75–82 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, J.C.R., Ishihara, T., Worth, N.A. et al. Thin Shear Layer Structures in High Reynolds Number Turbulence. Flow Turbulence Combust 92, 607–649 (2014). https://doi.org/10.1007/s10494-013-9518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9518-0

Keywords

Navigation