Skip to main content
Log in

Thin Shear Layers in High Reynolds Number Turbulence—DNS Results

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Using direct numerical simulation of turbulence in a periodic box driven by homogeneous forcing, with a maximum of 40963 grid points and Taylor micro-scale Reynolds numbers R λ up to 1131, it is shown that there is a transition in the forms of the significant, high vorticity, intermittent structures, from isolated vortices when R λ is less than 102 to complex thin-shear layers when R λ exceeds about 103. Both the distance between the layers and their widths are comparable with the integral length scale. The thickness of each of the layers is of the order of the Taylor micro-scale λ. Across the layers the velocity ‘jumps’ are of the order of the rms velocity u o of the whole flow. Within the significant layers, elongated vortical eddies are generated, with microscale thickness ℓ v ~10η ≪ λ, with associated peak values of vorticity as large as 35ω rms and with velocity jumps as large as 3.4u o , where η is the Kolmogorov micro scale and ω rms the rms vorticity. The dominant vortical eddies in the layers, which are approximately parallel to the vorticity averaged over the layers, are separated by distances of order ℓ v . The close packing leads to high average energy dissipation inside the layer, as large as ten times the mean rate of energy dissipation over the whole flow. The interfaces of the layers act partly as a barrier to the fluctuations outside the layer. However, there is a net energy flux into the small scale eddies within the thin layers from the larger scale motions outside the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Corrsin, S., Kistler, A.: Free-stream boundaries of turbulent flows. NACA Tech. Rep. 1244, pp. 1033–1064 (1955)

  2. Bisset, D.K., Hunt, J.C.R., Rogers, M.M.: The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199 (2009)

    Article  MATH  Google Scholar 

  4. da Silva, C.B., dos Reis, R.: The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. A 369, 738 (2011)

    Article  MATH  Google Scholar 

  5. Ishihara, T., Gotoh, T., Kaneda, Y.: Study of high-reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165 (2009)

    Article  MathSciNet  Google Scholar 

  6. Worth, N.A., Nickels, T.B.: Some characteristics of thin shear layers in homogeneous turbulent flow. Phil. Trans. R. Soc. A 369, 709 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hunt, J., Eames, I., da Silva, C., Westerweel, J.: Interfaces and inhomogeneous turbulence. Phil. Trans. R. Soc. A 369, 811 (2011)

    Article  MATH  Google Scholar 

  8. Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A.: Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335 (2007)

    Article  MATH  Google Scholar 

  9. Aoyama, T., Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K., Uno, A.: Statistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic box. J. Phys. Soc. Jpn. 74, 3202 (2005)

    Article  MATH  Google Scholar 

  10. Kaneda, Y. (ed.): Computational Science of Turbulence. Kyoritsu Shuppan (2012)

  11. Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31 (1985)

    Article  MATH  Google Scholar 

  12. Vincent, A., Meneguzzi, M.: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1 (1991)

    Article  MATH  Google Scholar 

  13. Jiménez, J., Wray, A.A., Saffman, P.G., Rogallo, R.S.: The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yokokawa, M., Itakura, K., Uno, A., Ishihara, T., Kaneda, Y.: 16.4-tflops direct numerical simulation of turbulence by a fourier spectral method on the earth simulator. In: Proceeding of the IEEE/ACM SC2002 Conference, p. 50 (2002)

  15. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21 (2003)

    Article  Google Scholar 

  16. Balakrishnan, S.K., Thomas, T.G., Coleman, G.N.: Oblique interaction of a laminar vortex ring with a non-deformable free surface: vortex reconnection and breakdown. J. Phys. Conf. Ser. 318, 062002 (2011)

    Article  Google Scholar 

  17. Kerr, R.M.: Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids 25, 065101 (2013)

    Article  Google Scholar 

  18. Bürger, K., Treib, M., Westermann, R., Werner, S., Lalescu, C.C., Szalay, A., Meneveau, C., Eyink, G.L.: Vortices within vortices: hierarchical nature of vortex tubes in turbulence. ArXiv:1210.3325 [physics.flu-dyn] (2012)

  19. Dritschel, D.G., Haynes, P.H., Juckes, M.N., Shepherd, T.G.: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech. 230, 647 (1991)

    Article  MATH  Google Scholar 

  20. Hunt, J., Eames, I., Westerweel, J.: Vortical interactions with interfacial shear layers. In: Kaneda, Y. (ed.) Proceedings of IUTAM Conference on Computational Physics and New Perspectives in Turbulence, pp. 331–338. Springer (2008)

  21. Kevlahan, N., Hunt, J.: Nonlinear interactions in turbulence with strong irrotational straining. J. Fluid Mech. 337, 333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tanahashi, K.F.M., Miyauchi, T.: Fine scale eddy cluster and energy cascade in homogeneous isotropic turbulence. In: Kaneda, Y. (ed.) Proceedings of IUTAM Conference on Computational Physics and New Perspectives in Turbulence, pp. 67–72. Springer (2008)

  23. Hunt, J.C.R., Durbin, P.A.: Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24, 375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press (1922)

  25. Kolmogorov, A.N.: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16 (1941)

    MATH  Google Scholar 

  26. Cerutti, S., Meneveau, C.: Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys. Fluids 10, 928 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Q., Chen, S., Eyink, G.L., Holm, D.D.: Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503 (2003)

    Article  Google Scholar 

  28. Domaradzki, J.A., Liu, W., Brachet, M.E.: An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids A 5, 1747 (1993)

    Article  MATH  Google Scholar 

  29. Gotoh, T., Watanabe, T.: Statistics of transfer fluxes of the kinetic energy and scalar variance. J. Turbul. 6, 1 (2005)

    Article  MathSciNet  Google Scholar 

  30. Piomelli, U., Cabot, W.H., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3, 1766 (1991)

    Article  MATH  Google Scholar 

  31. Kerr, R.M., Domaradzki, J.A., Barbier, G.: Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids 8, 197 (1996)

    Article  MATH  Google Scholar 

  32. Anderson, B.W., Domaradzki, J.A.: A subgrid-scale model for large-eddy simulation based on the physics of interscale energy transfer in turbulence. Phys. Fluids 24, 065104 (2012)

    Article  Google Scholar 

  33. Moisy, F., Jiménez, J.: Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111 (2004)

    Article  MATH  Google Scholar 

  34. Batchelor, G.K., Townsend, A.A.: Nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. Lond. A 199, 238 (1949)

    Article  MATH  Google Scholar 

  35. Warhaft, Z.: Passive scalars in turbulent flows. Ann. Rev. Fluid Mech. 32, 203 (2000)

    Article  MathSciNet  Google Scholar 

  36. Hunt, J., Eames, I., Westerweel, J., Davidson, P.A., Voropayev, S., Fernando, J., Braza, M.: Thin shear layers - the key to turbulence structure? J. Hydro. Environ. Res. 4, 75 (2010)

    Article  Google Scholar 

  37. Siggia, E.D.: Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375 (1981)

    Article  MATH  Google Scholar 

  38. Miyauchi, T., Tanahashi, M.: Coherent fine scale structure in turbulence. In: Kambe, K., Nakano, T., Miyauchi T. (eds.) IUTAM Symposium on Geometry and Statistics of Turbulence, pp. 67–76. Kluwer (2001)

  39. Ruetsch, G., Maxey, M.: The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids A 4, 2747 (1992)

    Article  Google Scholar 

  40. Fung, J.C.H.: Shear flow turbulence structure and its lagrangian statistics. Fluid Dyn. Res. 17, 147 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E.J., Frisch, U.: Wavelet analysis of turbulence reveals the multifractal nature of the richardson cascade. Nature 338, 51 (1989)

    Article  Google Scholar 

  42. Obukhov, A.M.: Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR 32, 22 (1941)

    Google Scholar 

  43. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large reynolds number. C. R. Acad. Sci. URSS 30, 299 (1941)

    Google Scholar 

  44. Steinhoff, J., Underhill, D.: Modification of the euler equations for vorticity confinement: application to the computation of interacting vortex rings. Phys. Fluids 6(8), 2738 (1994)

    Article  MATH  Google Scholar 

  45. Davidson, P.A.: On the decay of saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech. 663, 268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hunt, J., Carruthers, D.J.: Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ghosh, S., Davila, J., Hunt, J.C.R., Srdic, A., Fernando, H.J.S., Jonas, P.R.: How turbulence enhances coalescence of settling particles with applications to rain in clouds. Proc. Roy. Soc. A. 461, 3059 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Blum, D.B., Bewley, G.P., Bodenschatz, E., Gibert, M., Gylfason, A., Mydlarski, L., Voth, G.A., Xu, H., Yeung, P.K.: Signatures of non-universal large scales in conditional structure functions from various turbulent flows. New J. Phys. 13, 113020 (2011)

    Article  Google Scholar 

  49. Williams, J.E.F., Purshouse, M.: A vortex sheet modelling of boundary-layer noise. J. Fluid Mech. 113, 187 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ishihara.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 2.08 MB)

(MPG 680 KB)

(MPG 640 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, T., Kaneda, Y. & Hunt, J.C.R. Thin Shear Layers in High Reynolds Number Turbulence—DNS Results. Flow Turbulence Combust 91, 895–929 (2013). https://doi.org/10.1007/s10494-013-9499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9499-z

Keywords

Navigation