Skip to main content
Log in

Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Acetogenins, a class of natural compounds produced by some Annonaceae species, are potent inhibitors of mitochondrial electron transport systems. Although the cellular respiration processes are an important biochemical site for the acaricidal action of compounds, few studies have been performed to assess the bioactivity of acetogenin-based biopesticides on spider mites, mainly against species that occur in orchards. Using residual contact bioassays, this study aimed to evaluate the bioactivity of an ethanolic extract from Annona mucosa seeds (ESAM) (Annonaceae) against the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae), an important pest of the Brazilian citriculture. ESAM is a homemade biopesticide which was previously characterized by its high concentration of acetogenins. It caused both high mortality of P. citri females (LC50 = 7,295, 4,662, 3,463, and 2,608 mg l−1, after 48, 72, 96, and 120 h of exposure, respectively) and significant oviposition deterrence (EC50 = 3.194,80 mg l−1). However, there was no effect on P. citri female fertility (hatching rate). In addition, the ESAM efficacy (in terms of its LC90) was compared with commercial acaricides/insecticides (at its recommended rate) of both natural [Anosom® 1 EC (annonin), Derisom® 2 EC (karanjin), and Azamax® 1.2 EC (azadirachtin + 3-tigloylazadirachtol)] and synthetic origin [Envidor® 24 SC (spirodiclofen)]. Based on all of the analyzed variables, the ESAM exhibited levels of activity superior to other botanical commercial acaricides and similar to spirodiclofen. Thus, our results indicate that ESAM may constitute a biorational acaricide for citrus red mite integrated pest management in Brazilian citrus orchards, particularly for local use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agrofit (2013) Sistema de Agrotóxicos Fitossanitários—Ministério da Agricultura, Pecuária e Abastecimento, Brazil. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 14 Aug 2013

  • Akhtar Y, Isman MB (2013) Plant natural products for pest management: the magic of mixtures. In: Ishaaya I, Palli SR, Horowitz AR (eds) Advanced technologies for managing insect pests. Elsevier, Dordrecht, pp 231–247

    Chapter  Google Scholar 

  • Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540

    Article  CAS  PubMed  Google Scholar 

  • Bermejo A, Figadère B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D (2005) Acetogenins from Annonaceae: recents progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303

    Article  CAS  PubMed  Google Scholar 

  • Bernardi D, Botton M, Cunha US, Bernardi O, Malausa T, Garcia MS, Nava DE (2013) Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manage Sci 69:75–80

    Article  CAS  Google Scholar 

  • Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen—novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. Chim Int J Chem 57:697–701

    Article  CAS  Google Scholar 

  • Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Dekeyser M (2005) Acaricide mode of action. Pest Manage Sci 61:103–110

    Article  CAS  Google Scholar 

  • Döker İ, Kazak C (2012) Detecting acaricide resistance in Turkish populations of Panonychus citri McGregor (Acari: Tetranychidae). Syst Appl Acarol 17:368–377

    Google Scholar 

  • Fadamiro HY, Akotsen-Mensah C, Xiao Y, Anikwe J (2013) Field evaluation of predacious mites (Acari: Phytoseiidae) for biological control of citrus red mite, Panonychus citri (Trombidiformes: Tetranychidae). Fla Entomol 96:80–91

    Article  Google Scholar 

  • Feng R, Isman MB (1995) Selection for resistance to azadirachtin in the green peach aphid Myzus persicae. Experientia 51:831–833

    Article  CAS  Google Scholar 

  • Flamini G (2003) Acaricides of natural origin, personal experiences and review of literature (1900–2001). Stud Nat Product Chem 28(9):381–451

    Article  CAS  Google Scholar 

  • Flamini G (2006) Acaricides of natural origin. Part 2. Review of the literature (2002–2006). Nat Prod Comm 1:1151–1158

    CAS  Google Scholar 

  • Forim MR, Fernandes MFG, Cass QB, Fernandes JB, Vieira PC (2010) Simultaneous quantification of azadirachtin and 3-trigloyl azadirachtol in Brazilian seeds and oil of Azadirachta indica: application to quality control and marketing. Anal Method 2:860–869

    Google Scholar 

  • Gerson U, Weintraub PG (2007) Mites for the control of pests in protected cultivation. Pest Manage Sci 63:658–676

    Article  CAS  Google Scholar 

  • Gottwald TR, Abreu-Rodriguez E, Yokomi RK, Stansly PA, Riley TK (2002) Effects of chemical control of aphid vectors and of cross-protection on increase and spread of Citrus Tristeza Virus. In: Fifteenth IOCV conference vol 1, pp 117–130

  • Hinde J, Demétrio CGB (1998) Overdispersion: models and estimation. Comput Stat Data Anal 27:151–170

    Article  Google Scholar 

  • Hu J, Wang C, Wang J, You Y, Chen F (2010) Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Manage Sci 66:1025–1030

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated World. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Kalakumar B, Kumar HAS, Kumar BA, Reddy KS (2000) Evaluation of custard seed oil and neem oil as acaricides. J Vet Parasitol 14:171–172

    Google Scholar 

  • Kumar V, Chandrashekar K, Sidhu OP (2007) Synergistic action of neem and karanj to aphids and mites. J Entomol Res 31:121–124

    Google Scholar 

  • Lin CY, Wu DC, Yu JZ, Chen BH, Wang CL, Ko WH (2009) Control of silver leaf whitefly, cotton aphid and kanzawa spider mite with oil and extracts from seeds of sugar apple. Neotrop Entomol 38:531–536

    Article  PubMed  Google Scholar 

  • Lümmen P (1998) Complex I inhibitors as insecticides and acaricides. Biochim Biophys Acta 1364:287–296

    Article  PubMed  Google Scholar 

  • Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85:395–408

    Article  Google Scholar 

  • Migeon A, Dorkeld F (2013) Spider mites web: a comprehensive database for the Tetranychidae. http://www.montpellier.inra.fr/CBGP/spmweb. Acessed 01 July 2013

  • Moraes GJ, Flechtmann CHW (2008) Manual de acarologia: acarologia básica e ácaros de plantas cultivadas no Brasil. Ribeirão Preto, Holos, p 308

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc 135:370–384

    Google Scholar 

  • Ocampo D, Ocampo R (2006) Bioactividad de la família Annonaceae. Rev Univ Caldas 1:135–155

    Google Scholar 

  • Ohsawa K, Atsuzawa S, Mitsui T, Yamamoto Y (1991) Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L. J Pesticide Sci 16:93–96

    Article  CAS  Google Scholar 

  • Pan W, Luo P, Fu R, Gao P, Long Z, Xu F, Xiao H, Liu SH (2006) Acaricidal activity against Panonychus citri of a ginkgolic acid from the external seed coat of Ginkgo biloba. Pest Manage Sci 62:283–287

    Article  CAS  Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry R (1998) Compounds interfering with ATP synthesis. In: Perry AS, Yamamoto I, Ishaaya I, Perry R (eds) Insecticides in agriculture and environment applied agriculture. Springer, Berlin, pp 121–125

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Raynaud S, Fourneau C, Laurens A, Hocquemiller PL, Bories C (2000) Squamoscin and benzyl benzoate, acaricidal components of Uvaria pauci-ovulata bark extracts. Planta Med 66:173–175

    Article  CAS  PubMed  Google Scholar 

  • Reis PR, Pedro Neto M, Franco RA (2005) Controle de Brevipalpus phoenicis (Geijskes, 1939) e Oligonychus ilicis (McGregor, 1917) (Acari: Tenuipalpidae, Tetranychidae) em cafeeiro e o impacto sobre ácaros benéficos: II. spirodiclofen e azocyclotin. Cienc Agrotec 29:528–537

    Article  Google Scholar 

  • Ribeiro LP, Vendramim JD, Bicalho KU, Andrade MS, Fernandes JB, Moral RA, Demétrio CGB (2013) Annona mucosa Jacq. (Annonaceae): a promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J Stored Prod Res 55:6–14

    Article  Google Scholar 

  • Roobakkumar A, Subramaniam MSR, Babu A, Muraleedharan N (2010) Bioefficacy of certain plant extracts against the red spider mite, Oligonychus coffeae (Nietner) (Acarina: Tetranychidae) infesting tea in Tamil Nadu, India. Int J Acarol 36:255–258

    Article  Google Scholar 

  • Sakunwarin S, Chandrapatya A, Visetson S (2004) Synergism and detoxification mechanism of crude sugar apple seed extract in Tetranychus truncatus Ehara (Prostigmata: Tetranychidae). Kasetsart J (Nat Sci) 38:340–348

    Google Scholar 

  • SAS Institute (2011) Statistical analysis system: getting started with the SAS learning. Version 9.2. SAS Institute, Cary

  • Schlesener DCH, Duarte AF, Guerrero MFC, Cunha US, Nava DE (2013) Efeitos do nim sobre Tetranychus urticae Koch (Acari: Tetranychidae) e os predadores Phytoseiulus macropilis (Banks) e Neoseiulus californicus (Mcgregor) (Acari: Phytoseiidae). Rev Bras Frutic 35:59–66

    Article  Google Scholar 

  • Seffrin RC, Shikano I, Akhtar Y, Isman MB (2010) Effects of crude seed extracts of Annona atemoya and Annona squamosa L. against the cabbage looper, Trichoplusia ni in the laboratory and greenhouse. Crop Prot 29:20–24

    Article  Google Scholar 

  • Silva FR, Vasconcelos GJN, Gondim Junior MGC, Oliveira JV (2006) Toxicidade de acaricidas para ovos e fêmeas adultas de Euseius alatus DeLeon (Acari: Phytoseiidae). Caatinga 19:294–303

    Google Scholar 

  • Sims SR, Greenplate JT, Stone B, Caprio MA, Gould F (1996) Monitoring strategies for early detection of Lepidoptera resistance to Bacillus thuringiensis insecticidal proteins. In: Brown TM (ed) Molecular genetics and evolution of pesticide resistance. American Chemical Society, Washington, pp 229–242

    Chapter  Google Scholar 

  • Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ (2011) Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PLoS ONE 6:1

    Article  Google Scholar 

  • Throne JE, Weaver DK, Chew VB, James E (1995) Probit analysis of correlated data: multiple observations over time at one concentration. J Econ Entomol 88:1510–1512

    Google Scholar 

  • Vendramim JD, Castiglioni E (2000) Aleloquímicos, resistência de plantas e plantas inseticidas. In: Guedes JC, Costa ID, Castiglioni E (eds) Bases e técnicas do manejo de insetos. Pallotti, Santa Maria, pp 113–128

    Google Scholar 

  • Yamamoto PT, Zanardi OZ (2013) Atualização de manejo do ácaro purpúreo Panonychus citri. Rev Citric Atual 96:16–17

    Google Scholar 

Download references

Acknowledgments

The authors thank the Dr. Heimo Rainer (Department of Systematics and Evolution of Higher Plants, University of Vienna) for their help in identifying the plant species that was studied and the São Paulo Research Foundation (FAPESP, Grant Number 2010/52638-0) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro do Prado Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, L.P., Zanardi, O.Z., Vendramim, J.D. et al. Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite. Exp Appl Acarol 64, 87–98 (2014). https://doi.org/10.1007/s10493-014-9810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-014-9810-2

Keywords

Navigation