Skip to main content
Log in

Total effects of contact and residual exposure of bifenthrin and λ-cyhalothrin on the predatory mite Galendromus occidentalis (Acari: Phytoseiidae)

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Pyrethroid insecticides are generally regarded as acutely toxic to predatory phytoseiid mites; however, persistence of hull split spray pyrethroid residues on almond trees and their effects on phytoseiids have not been quantified over time. Hull split, the separation of the almond hull along the suture, exposes the new crop nuts to infestation by Amyelois transitella (Walker) larvae, and is the preferred timing for insecticides applied for their control. Galendromus occidentalis (Nesbitt) is the most important phytoseiid biocontrol agent for web-spinning spider mites in California (USA) almond orchards, and the impact of bifenthrin and λ-cyhalothrin pyrethroid residue on their survival, fertility, and fecundity was determined. The total effects of direct contact with esfenvalerate, permethrin, bifenthrin and λ-cyhalothrin were also evaluated for comparison. The total effects (E) of direct contact treatments of the four pyrethroids ranged from 77.8 % for esfenvalerate to 98.8 % for bifenthrin. Both bifenthrin and λ-cyhalothrin twig residue would be considered harmful (IOBC class 4) following field application at hull split timing. Bifenthrin twig residue would be considered slightly harmful (IOBC class 2) for up to 3.5 months and harmless (IOBC class 1) after 6 months. λ-cyhalothrin residue would be considered moderately harmful (IOBC class 3) for up to 3.5 months following application and harmless (IOBC class 1) after 6 months. Bifenthrin and λ-cyhalothrin twig residue on treated trees significantly reduced G. occidentalis female survival for up to 6 months post-treatment, however total effects (E) classify these residues as harmless (IOBC class 1) after 6 months. Harmful effects of direct and residual exposure following application have implications for the use of these pyrethroids in an integrated mite management program for perennial crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliniazee MT, Cranham JE (1980) Effect of four synthetic pyrethroids on a predatory mite, Typhlodromus pyri and its prey, Panonychus ulmi on apples in southeast England. Environ Entomol 9:436–439

    CAS  Google Scholar 

  • Amano H, Ishii Y, Kobori Y (2004) Pesticide susceptibility of two dominant phytoseiid mites Neoseiulus californicus and N. womersley, in conventional Japanses fruit orchards (Gamasina: Phytoseiidae). Nihon Dani Gakkai 13:65–70

    Google Scholar 

  • Bentley WJ, Zalom FG, Barnett WW, Sanderson JP (1987) Population densities of Tetranychus spp. (Acari: Tetranychidae) after treatment with insecticides for Amyelois transitella (Lepidoptera: Pyralidae). J Econ Entomol 80:193–199

    CAS  Google Scholar 

  • Bostanian NJ, Belanger A (1985) The toxicity of three pyrethroids to Amblyseius fallacis (Garman) Acari; Phytoseiidae and their residues on apple foliage. Agric Ecosyst Environ 14:243–250

    Article  CAS  Google Scholar 

  • Bostanian NJ, Thistlewood HA, Hardman JM, Laurin M, Racette G (2009) Effects of seven new orchard pesticides on Galendromus occidentalis in laboratory studies. Pest Manag Sci 65:635–639

    Article  PubMed  CAS  Google Scholar 

  • Bower CC, Kaldor J (1980) Selectivity of 5 insecticides for codling moth Laspeyresia-pomella control effects on the two-spotted spider mite Tetranychus urticae and its predators. Environ Entomol 9:128–132

    CAS  Google Scholar 

  • Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi J, Symington S, Clark JM, Burr S, Ray S (2009) Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 30:S17–S31

    Article  PubMed  CAS  Google Scholar 

  • Burr SA, Ray DE (2004) Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci 77:341–346

    Article  PubMed  CAS  Google Scholar 

  • Caltagirone LE (1970) Overwintering sites for Metaseiulus occidentalis in peach orchards. J Econ Entomol 63:340–341

    Google Scholar 

  • Choi JS, Soderlund DM (2006) Structure-activity relationships for the action of 11 pyrethroid insecticides on rat Na(v)1.8 sodium channels expressed in Xenopus oocytes. Toxicol Appl Pharmacol 211:233–244

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (2002) Leading edge of plant protection for almond. HortTechnology 12:619–622

    Google Scholar 

  • Cote KW, Lewis EE, Schultz PB (2002) Compatibility of acaricide residues with Phytoseiulus persimilis and their effects on Tetranychus urticae. Hort Sci 37:906–909

    CAS  Google Scholar 

  • Fecko A (1999) Environmental fate of bifenthrin. http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/bifentn.pdf. Accessed 4 June 2012

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science, Oxford, UK

  • Hallam TG, Canziani GA, Lassiter RR (1993) Sublethal narcosis and population persistence—a modeling study on growth effects. Environ Toxicol Chem 12:947–954

    Article  CAS  Google Scholar 

  • He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev Environ Contam Toxicol 195:72–91

    Google Scholar 

  • Higbee BS, Sieg JP (2012) Field efficacy and application timing of methoxyfenozide, a reduced-risk treatment for control of navel orangeworm (Lepidoptera: Pyralidae) in almond. J Econ Entomol 105:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Hoy MA, Flaherty DL (1975) Diapause induction and duration in vineyard-collected Metaseiulus occidentalis. Environ Entomol 4:262–264

    Google Scholar 

  • Hoy MA, Cunningham GL, Knutson L (1997) Biological control of pests by mites. University of California, Division of Agriculture and Natural Resources Publication, Berkeley

  • Hoyt SC (1969) Integrated chemical control of insects and biological control of mites on apple in Washington. J Econ Entomol 62:74–86

    CAS  Google Scholar 

  • Jones VP, Unruh TR, Horton DR, Mills NJ, Brunner JF, Beers EH, Shearer PW (2009) Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management. Pest Manag Sci 65:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Kim SS, Yoo SS (2002) Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the two spotted spider mite, Tetranychus urticae. Biocontrol 47:563–573

    Article  CAS  Google Scholar 

  • Laurin MC, Bostanian NJ (2007) Laboratory studies to elucidate the residual toxicity of eight insecticides to Anystis baccarum (Acari: Anystidae). J Econ Entomol 100:1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Lautraite D, Sargent D (2009) Pyrethroids toxicology—a review of attributes and current issues. Bayer CropScience J 62:195–210

    CAS  Google Scholar 

  • Lee MS, Davis DW (1968) Life history and behavior of the predatory mite Typhlodromus occidentalis in Utah. Ann Entomol Soc Am 61:251–255

    Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  PubMed  CAS  Google Scholar 

  • Overmeer WPJ, Van Zon AQ (1982) A standardized method for testing the side effects of pesticides on the predacious mite Amblyseius potentiallae (Acarina: Phytoseiidae). Entomophaga 27:357–364

    Article  CAS  Google Scholar 

  • Sáenz de Cabezón Irigaray F, Zalom FG (2006) Side effects of five new acaricides on the predator Galendromus occidentalis (Acari, Phytoseiidae). Exp Appl Acarol 38:299–305

    Article  Google Scholar 

  • Sáenz de Cabezón Irigaray F, Zalom FG (2007) Selectivity of acaricide exposure on Galendromus occidentalis reproductive potential. Biocontrol Sci Technol 17:541–546

    Article  Google Scholar 

  • Sáenz de Cabezón Irigaray F, Zalom FG, Thompson PB (2007) Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biol Control 40:153–159

    Article  Google Scholar 

  • Stark JD, Wennergren U (1995) Can population effects of pesticides be predicted from demographic toxicological studies. J Econ Entomol 88:1089–1096

    Google Scholar 

  • Stark JD, Tanigoshi L, Bounfour M, Antonelli A (1997) Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotoxicol Environ Saf 37:273–279

    Article  PubMed  CAS  Google Scholar 

  • Stavrinides MC, Lara JR, Mills NJ (2010) Comparative influence of temperature on development and biological control of two common vineyard pests (Acari: Tetranychidae). Biol Control 55:126–131

    Article  Google Scholar 

  • Sterk G, Hassan SA, Baillod M, Bakker F, Bigler F, Blümel S, Bogenschütz H, Boller E, Bromand B, Brun J, Calis JNM, Coremans-Pelseneer J, Duso C, Garrido A, Grove A, Heimbach U, Hokkanen H, Jacas J, Lewis G, Moreth L, Polgar L, Rovesti L, Samsoe-Petersen L, Sauphanor B, Schaub L, Stäubli A, Tuset JJ, Vainio A, Van DeVeire M, Viggiani G, Vinuela E, Vogt H (1999) Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. Biocontrol 44:99–117

    Article  CAS  Google Scholar 

  • Weiner ML, Nemec M, Sheets L, Sargent D, Breckenridge C (2009) Comparative functional observational battery study of twelve commercial pyrethroid insecticides in male rats following acute oral exposure. Neurotoxicology 30:S1–S16

    Article  PubMed  CAS  Google Scholar 

  • Zalom FG, Stimmann MW, Arndt TS, Walsh DB, Pickel C, Krueger WH (2001) Analysis of permethrin (cis- and trans-isomers) and esfenvalerate on almond twigs and effects of residues on the predator mite Galendromus occidentalis (Acari: Phytoseiidae). Environ Entomol 30:70–75

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Nickels Soils Laboratory and UC Cooperative Extension Farm Advisor John Edstrom for the use and management of the experimental orchard site, and Nicole Nicola for assistance in data collection. This research was funded through grant 2008-ENT07-Zalom from the Almond Board of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Hamby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamby, K.A., Alifano, J.A. & Zalom, F.G. Total effects of contact and residual exposure of bifenthrin and λ-cyhalothrin on the predatory mite Galendromus occidentalis (Acari: Phytoseiidae). Exp Appl Acarol 61, 183–193 (2013). https://doi.org/10.1007/s10493-013-9680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9680-z

Keywords

Navigation