, Volume 19, Issue 1, pp 175-232

The Geometry of Unitary 2-Representations of Finite Groups and their 2-Characters

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Motivated by topological quantum field theory, we investigate the geometric aspects of unitary 2-representations of finite groups on 2-Hilbert spaces, and their 2-characters. We show how the basic ideas of geometric quantization are ‘categorified’ in this context: just as representations of groups correspond to equivariant line bundles, 2-representations of groups correspond to equivariant gerbes. We also show how the 2-character of a 2-representation can be made functorial with respect to morphisms of 2-representations. Under the geometric correspondence, the 2-character of a 2-representation corresponds to the geometric character of its associated equivariant gerbe. This enables us to show that the complexified 2-character is a unitarily fully faithful functor from the complexified Grothendieck category of unitary 2-representations to the category of unitary conjugation equivariant vector bundles over the group.