Skip to main content
Log in

Abstract

Categorical orthodoxy has it that collections of ordinary mathematical structures such as groups, rings, or spaces, form categories (such as the category of groups); collections of 1-dimensional categorical structures, such as categories, monoidal categories, or categories with finite limits, form 2-categories; and collections of 2-dimensional categorical structures, such as 2-categories or bicategories, form 3-categories. We describe a useful way in which to regard bicategories as objects of a 2-category. This is a bit surprising both for technical and for conceptual reasons. The 2-cells of this 2-category are the crucial new ingredient; they are the icons of the title. These can be thought of as “the oplax natural transformations whose components are identities”, but we shall also give a more elementary description. We describe some properties of these icons, and give applications to monoidal categories, to 2-nerves of bicategories, to 2-dimensional Lawvere theories, and to bundles of bicategories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bénabou, J.: Introduction to bicategories. In Reports of the Midwest Category Seminar, pp. 1–77. Springer, Berlin (1967)

    Google Scholar 

  2. Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59(1), 1–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheng, E., Gurski, N.: The periodic table of n-categories for low dimensions I: degenerate categories and degenerate bicategories. In: Davydov et al. (ed.) Categories in Algebra, Geometry and Mathematical Physics (=Contemporary Math. 431), pp. 143–164. AMS, Washington, DC (2007)

    Google Scholar 

  4. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Am. Math. Soc. 117(558), vi+81 (1995)

    MathSciNet  Google Scholar 

  5. Grandis, M., Pare, R.: Adjoint for double categories. Addenda to: “Limits in double categories” [Cah. Topol. Géom. Différ. Catég. 40 (1999), no. 3, 162–220]. Cah. Topol. Geom. Differ. Categ. 45(3), 193–240 (2004)

  6. Gray, J.W.: Formal Category Theory: Adjointness for 2-Categories. Springer, Berlin (1974)

    MATH  Google Scholar 

  7. Hess, K., Parent, P.-E., Scott, J.: Co-rings over operads characterize morphisms, arXiv:math/0505559

  8. Kelly, G.M.: Structures defined by finite limits in the enriched context. I. Cah. Topol. Geom. Differ. 23(1), 3–42 (1982)

    MATH  Google Scholar 

  9. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. J. Pure Appl. Algebra 89(1–2), 163–179 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lack, S.: On the monadicity of finitary monads. J. Pure Appl. Algebra 140(1), 65–73 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lack, S.: Limits for lax morphisms. Appl. Categ. Structures 13(3), 189–203 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lack, S., Paoli, S.: 2-nerves for bicategories. K-Theory 38(2), 153–175 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mac Lane, S., Paré, R.: Coherence for bicategories and indexed categories. J. Pure Appl. Algebra 37(1), 59–80 (1985)

    Article  MathSciNet  Google Scholar 

  14. Power, J.: Enriched Lawvere theories. Theory Appl. Categ. 6, 83–93 (1999). (electronic). The Lambek Festschrift

    MATH  MathSciNet  Google Scholar 

  15. Power, J.: Three dimensional monad theory. In: Davydov et al. (ed.) Categories in Algebra, Geometry and Mathematical Physics (=Contemporary Math. 431), pp. 405–426. AMS, Washington, DC (2007)

    Google Scholar 

  16. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math. Struct. Comput. Sci. 7(5), 453–468 (1997). Logic, domains, and programming languages (Darmstadt, 1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Street, R.: Fibrations in bicategories. Cah. Topol. Geom. Differ. 21(2), 111–160 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Street, R.: Categorical structures. In: Handbook of algebra, vol. 1, pp. 529–577. North-Holland, Amsterdam (1996)

    Chapter  Google Scholar 

  19. Wolff, H.: V-cat and V-graph. J. Pure Appl. Algebra 4, 123–135 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lack, S. Icons. Appl Categor Struct 18, 289–307 (2010). https://doi.org/10.1007/s10485-008-9136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-008-9136-5

Keywords

Mathematics Subject Classifications (2000)

Navigation