Skip to main content

Advertisement

Log in

Indole-3-acetic acid producing root-associated bacteria on growth of Brazil Pine (Araucaria angustifolia) and Slash Pine (Pinus elliottii)

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Araucaria forests in Brazil today correspond to only 0.7 % of the original 200 km2 of natural forest that covered a great part of the southern and southeastern area of the Atlantic Forest and, although Araucaria angustifolia is an endangered species, illegal exploitation is still going on. As an alternative to the use of hardwoods, Pinus elliottii presents rapid growth and high tolerance to climatic stress and low soil fertility or degraded areas. Thus, the objective of this study was to evaluate the effect of IAA-producing bacteria on the development of A. angustifolia and P. elliottii. We used five bacterial strains previously isolated from the rhizosphere of A. angustifolia, which produce quantities of IAA ranging from 3 to 126 μg mL−1. Microbiolized seeds were sown in a new gnotobiotic system developed for this work, that allowed the quantification of the plant hormone IAA produced by bacteria, and the evaluation of its effect on seedling development. Also, it was shown that P. elliottii roots were almost as satisfactory as hosts for these IAA producers as A. angustifolia, while different magnitudes of mass increases were found for each species. Thus, we suggest that these microbial groups can be helpful for the development and reestablishment of already degraded forests and that PGPR isolated from Araucaria rhizosphere have the potential to be beneficial in seedling production of P. elliottii. Another finding is that our newly developed gnotobiotic system is highly satisfactory for the evaluation of this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:234–266

    Article  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25(10):2397–2406

    Article  CAS  Google Scholar 

  • Berg G, Zachow C (2011) PRPG interplay with rhizosphere communities and effect on plant growth and health. In: Maheshwari D (ed) Bacteria in agrobiology: crop ecosystems. Springer, The Netherlands, pp 97–109

    Chapter  Google Scholar 

  • BRASIL. Ministério do Meio Ambiente. Proposta do grupo de trabalho preservação e recuperação da Floresta Ombrófila Mista no Estado de Santa Catarina. Portaria Ministerial 49, de 06 de fevereiro de 2002. Brasília, Brasil, 2002. 77p

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic-acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalho F, Moreira FMS, Cardoso EJBN (2012) Chemical and biochemical properties of Araucaria angustifolia (Bert.) Ktze. forest soils in the state of São Paulo. Rev Bras Ciênc Solo [Online] 36(4):1189–1202

    Article  Google Scholar 

  • Cheng Z, Woody OZ, Mcconkey BJ, Glick BR (2011) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263

    Article  Google Scholar 

  • Cunha JF, Picoli EAT, Alfenas AC, Gonçalves RC (2006) Efeito “IN VITRO” de antibióticos e rizobactérias no controle de bactérias fitopatogênicas ao Eucalyptus spp. Revista Árvore, novembro-dezembro, ano/vol. 30, número 006. Sociedade de Investigações Florestais, Viçosa, Brasil, 871–876

  • Floriano EP, Schneider PR, Finger CAG, Fleig FD (2009) Economic analysis of the Pinus elliottii yield in the southeastern. Econ Anal 19:393–406

    Google Scholar 

  • Hueck K (1972) As florestas da América do Sul. Polígono, São Paulo, p 239

    Google Scholar 

  • Husen E (2003) Screening of soil bacteria for plant growth promotion activities in vitro. Indones J Agric Sci 4:27–31

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: International Conference on Plant Pathogenic Bacteria, 4, Angers, Proceedings. Angers: Institute National de la Recherche, vol 2, pp 879–882

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio TGD, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  Google Scholar 

  • Mafia RG, Alfenas AC, Maffia LA, Ferreira EM, de Siqueira L (2007) Efeito de rizobactérias sobre o enraizamento e crescimento de clones de eucalipto em diferentes condições de propagação clonal. Revista Árvore, Viçosa 3(5):813–821

    Article  Google Scholar 

  • Medeiros JD, Savi M, Brito BFA (2005) Seleção de áreas para criação de Unidades de Conservação na Floresta Ombrófila Mista. Biotemas 18:33–50

    Google Scholar 

  • Radmann EB, Fachinello JC, Peters JA (2002) Efeito de auxinas e condições de cultivo no enraizamento in vitro de porta-enxertos de macieira ‘M-9’. Rev Bras Frutic (Online) 24(3):624–628

    Article  Google Scholar 

  • Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol Res 167(2):69–78

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MV, Calil FN, Vogel HLM (Org.) (2005) Silvicultura Aplicada. Santa Maria, p 120

  • Siddiqui ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization, vol 4. Springer, Dordrecht, pp 111–141

    Google Scholar 

  • Singh J, Pandey V, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Smith DL, Gray EJ (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Teixeira DA, Alfenas AC, Mafia RG, Maffia LA, Ferreira EM (2005) Evidências de Indução de Resistência Sistêmica à Ferrugem do Eucalipto Mediada por Rizobactérias Promotoras do Crescimento de Plantas. Fitopatol Bras 30(4):350–356

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil Dordrecht 255:571–586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank FAPESP for the doctoral grant (process 2011/04319-6) for the first author and CNPq for the productivity grant conceded to the last author. We also acknowledge the technical collaboration of Denise Mescolotti and Fernando Baldesin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Gumiere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumiere, T., Ribeiro, C.M., Vasconcellos, R.L.F. et al. Indole-3-acetic acid producing root-associated bacteria on growth of Brazil Pine (Araucaria angustifolia) and Slash Pine (Pinus elliottii) . Antonie van Leeuwenhoek 105, 663–669 (2014). https://doi.org/10.1007/s10482-014-0120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0120-9

Keywords

Navigation