Skip to main content
Log in

A global analysis of adaptive evolution of operons in cyanobacteria

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agervald A, Stensjo K, Holmqvist M, Lindblad P (2008) Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120. BMC Microbiol 8:69

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bergman NH, Passalacqua KD, Hanna PC, Qin ZS (2007) Operon prediction for sequenced bacterial genomes without experimental information. Appl Environ Microbiol 73(3):846–854

    Article  PubMed  CAS  Google Scholar 

  • Bockhorst J, Craven M, Page D, Shavlik J, Glasner J (2003a) A Bayesian network approach to operon prediction. Bioinformatics 19(10):1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Bockhorst J, Qiu Y, Glasner J, Liu M, Blattner F, Craven M (2003b) Predicting bacterial transcription units using sequence and expression data. Bioinformatics 19(Suppl 1):i34–i43

    Article  PubMed  Google Scholar 

  • Brouwer RW, Kuipers OP, van Hijum SA (2008) The relative value of operon predictions. Brief Bioinform 9(5):367–375

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Su Z, Dam P, Palenik B, Xu Y, Jiang T (2004a) Operon prediction by comparative genomics: an application to the Synechococcus sp WH8102 genome. Nucl Acids Res 32(7):2147–2157

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Su Z, Xu Y, Jiang T (2004b) Computational prediction of operons in Synechococcus sp. WH8102. Genome Inform 15(2):211–222

    PubMed  CAS  Google Scholar 

  • Dam P, Olman V, Harris K, Su Z, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucl Acids Res 35(1):288–298

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23(9):324–328

    Article  PubMed  CAS  Google Scholar 

  • de Daruvar A, Collado-Vides J, Valencia A (2002) Analysis of the cellular functions of Escherichia coli operons and their conservation in Bacillus subtilis. J Mol Evol 55(2):211–221

    Article  PubMed  Google Scholar 

  • de Hoon MJ, Makita Y, Nakai K, Miyano S (2005) Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Comput Biol 1(3):e25

    Article  PubMed  Google Scholar 

  • Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucl Acids Res 38(Database issue):D396–D400

    Article  PubMed  CAS  Google Scholar 

  • Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6(2):R14

    Article  PubMed  Google Scholar 

  • Edwards MT, Rison SC, Stoker NG, Wernisch L (2005) A universally applicable method of operon map prediction on minimally annotated genomes using conserved genomic context. Nucl Acids Res 33(10):3253–3262

    Article  PubMed  CAS  Google Scholar 

  • Ermolaeva MD, White O, Salzberg SL (2001) Prediction of operons in microbial genomes. Nucl Acids Res 29(5):1216–1221

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2008) Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat 171(6):713–725

    Article  PubMed  Google Scholar 

  • Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18(6):609–613

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59(Pt 10):2510–2526

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24

    Article  PubMed  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48(6):723–739

    Article  PubMed  CAS  Google Scholar 

  • Huynen M, Snel B, Lathe W, Bork P (2000) Exploitation of gene context. Curr Opin Struct Biol 10(3):366–370

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Takemoto K, Mori H, Gojobori T (1999) Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol 16(3):332–346

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961a) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961b) On the regulation of gene activity. Cold Spring Harb Symp Quant Biol 26:193–211

    Article  CAS  Google Scholar 

  • Jacob E, Sasikumar R, Nair KN (2005) A fuzzy guided genetic algorithm for operon prediction. Bioinformatics 21(8):1403–1407

    Article  PubMed  CAS  Google Scholar 

  • Janga SC, Lamboy WF, Huerta AM, Moreno-Hagelsieb G (2006) The distinctive signatures of promoter regions and operon junctions across prokaryotes. Nucl Acids Res 34(14):3980–3987

    Article  PubMed  CAS  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucl Acids Res 30:42–46

    Article  PubMed  CAS  Google Scholar 

  • Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV, Arkin A, Mironov AA, Gelfand MS, Dubchak I (2007) RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucl Acids Res 35(Database issue):D407–D412

    Article  PubMed  CAS  Google Scholar 

  • Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church GM, Richardson P, Chisholm SW (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3(12):e231

    Article  PubMed  Google Scholar 

  • Lawrence JG (2003) Gene organization: selection, selfishness, and serendipity. Annu Rev Microbiol 57:419–440

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143(4):1843–1860

    PubMed  CAS  Google Scholar 

  • Mao F, Dam P, Chou J, Olman V, Xu Y (2009) DOOR: a database for prokaryotic operons. Nucl Acids Res 37(Database issue):D459–D463

    Article  PubMed  CAS  Google Scholar 

  • Marcotte EM (2000) Computational genetics: finding protein function by nonhomology methods. Curr Opin Struct Biol 10(3):359–365

    Article  PubMed  CAS  Google Scholar 

  • Merino-Puerto V, Mariscal V, Mullineaux CW, Herrero A, Flores E (2010) Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol Microbiol 75(5):1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Hagelsieb G, Collado-Vides J (2002) A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 18(Suppl 1):S329–S336

    Article  PubMed  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103(35):13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S (1998) CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucl Acids Res 26(1):63–67

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucl Acids Res 38(Database issue):D379–D381

    Article  PubMed  CAS  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 27(1):29–34

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Yoshizawa AC (2011) ODB: a database for operon organizations, 2011 update. Nucl Acids Res 39(Database issue):D552–D555

    Article  PubMed  Google Scholar 

  • Okuda S, Katayama T, Kawashima S, Goto S, Kanehisa M (2006) ODB: a database of operons accumulating known operons across multiple genomes. Nucl Acids Res 34(Database issue):D358–D362

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96(6):2896–2901

    Article  PubMed  CAS  Google Scholar 

  • Price MN, Huang KH, Alm EJ, Arkin AP (2005a) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucl Acids Res 33(3):880–892

    Article  PubMed  CAS  Google Scholar 

  • Price MN, Huang KH, Arkin AP, Alm EJ (2005b) Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 15(6):809–819

    Article  PubMed  CAS  Google Scholar 

  • Price MN, Arkin AP, Alm EJ (2006) The life-cycle of operons. PLoS Genet 2(6):e96

    Article  PubMed  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(MAR):1–61

    Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424(6952):1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002a) Connected gene neighborhoods in prokaryotic genomes. Nucl Acids Res 30(10):2212–2223

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, Yin J, Koonin EV (2002b) Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucl Acids Res 30(19):4264–4271

    Article  PubMed  CAS  Google Scholar 

  • Sabatti C, Rohlin L, Oh MK, Liao JC (2002) Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucl Acids Res 30(13):2886–2893

    Article  PubMed  CAS  Google Scholar 

  • Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci USA 97(12):6652–6657

    Article  PubMed  CAS  Google Scholar 

  • Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl Acids Res 34:D394–D397

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3(3):145–165

    Article  CAS  Google Scholar 

  • Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB (2010) Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC Syst Biol 4:105

    PubMed  Google Scholar 

  • Sivashankari S, Shanmughavel P (2006) Functional annotation of hypothetical proteins—a review. Bioinformation 1(8):335–338

    Article  PubMed  Google Scholar 

  • Snel B, Bork P, Huynen MA (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA 99(9):5890–5895

    Article  PubMed  CAS  Google Scholar 

  • Steglich C, Futschik M, Rector T, Steen R, Chisholm SW (2006) Genome-wide analysis of light sensing in Prochlorococcus. J Bacteriol 188(22):7796–7806

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, Li Y (2005) Refined phylogenetic profiles method for predicting protein–protein interactions. Bioinformatics 21(16):3409–3415

    Article  PubMed  CAS  Google Scholar 

  • Swingley WD, Blankenship RE, Raymond J (2008) Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25(4):643–654

    Article  PubMed  CAS  Google Scholar 

  • Vijayan V, Jain IH, O’Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12(5):R47

    Article  PubMed  Google Scholar 

  • von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucl Acids Res 31(1):258–261

    Article  Google Scholar 

  • Zhang GQ, Cao ZW, Luo QM, Cai YD, Li YX (2006) Operon prediction based on SVM. Comput Biol Chem 30(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Szustakowski JD, Fortnow L, Roberts RJ, Kasif S (2002) Computational identification of operons in microbial genomes. Genome Res 12(8):1221–1230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from Department of Biotechnology, Government of India awarded to PPW and funding from the Consortium for Clean Coal Utilization at Washington University to PPW and HBP. DM was supported by the DBT-BINC-JRF Program. Part of the work was carried out with support from M.Sc.-DBT-Studentship availed by DM at the Bioinformatics Centre, University of Pune. The authors acknowledge useful discussions with Dr. Urmila Kulkarni-Kale of University of Pune. The authors thank Kruti Nandu for help with microarray data normalization, Dilip A. Durai for the development of cyano-operon database and anonymous reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod P. Wangikar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memon, D., Singh, A.K., Pakrasi, H.B. et al. A global analysis of adaptive evolution of operons in cyanobacteria. Antonie van Leeuwenhoek 103, 331–346 (2013). https://doi.org/10.1007/s10482-012-9813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9813-0

Keywords

Navigation