Skip to main content
Log in

Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov.

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 30 September 2012

Abstract

The phylum “Chloroflexi” contains highly divergent groups of bacteria. To understand the evolutionary relationships among these bacteria, phylogenetic trees were constructed based upon concatenated sequences for 20 conserved proteins and comparative genomic analyses were carried out to identify molecular markers (conserved signature indels or CSIs) that are specific for different clades of Chloroflexi. In phylogenetic trees based upon either concatenated protein sequences or the 16S rRNA gene, species from the class Chloroflexi and the order Chloroflexales formed strongly supported clades. The species from these clades are also clearly distinguished from other bacteria based upon 5 and 9 identified CSIs, respectively, in important proteins that were specific for these clades. Additionally, three CSIs that were specific for the genus Chloroflexus and four CSIs specific for the genus Roseiflexus were also identified. In phylogenetic trees, the species Oscillochloris trichoides (family Oscillochloridaceae) formed a strongly supported clade with the species from the genus Chloroflexus (and with Chloronema in the 16S rRNA gene tree). A specific relationship of O. trichoides to the Chloroflexus spp. is also strongly supported by 7 CSIs that are uniquely shared by the species from these genera but not found in Roseiflexus or any other bacteria. In addition to their phylogenetic clustering and shared presence of many novel CSIs, the species from the genera Chloroflexus and Oscillochloris (and also Chloronema) also differ from species of the genera Roseiflexus (and Heliothrix) by their green color, shared presence of the chlorosomes and Bchl c (in addition to Bchl a and d in some species), by their fatty acid profiles, and by the presence of β- and γ-carotenes and quinone MK-10. Based upon these observations, we propose division of the order Chloroflexales into two suborders: the first of these suborders Chloroflexineae subord. nov. is comprised of the family Oscillochloridaceae (emended to include the genus Chloronema) and a new family Chloroflexaceae fam. nov. consisting of the genus Chloroflexus. The second suborder Roseiflexineae subord. nov. contains a new family Roseiflexaceae fam. nov. comprised of the genera Roseiflexus and Heliothrix; orange-red bacteria lacking chlorosomes and Bchl c and differing from the Chloroflexineae in their carotenoids, quinones and fatty acid profiles. Additionally, we also provide here formal descriptions of the class Chloroflexi class. nov., and of the orders Chloroflexales ord. nov. and Herpetosiphonales ord. nov. Lastly, our phylogenetic and comparative analyses provide either no or very weak support for a grouping together of the different classes (viz. Chloroflexi, Thermomicrobia, Dehalococcoidetes, Anaerolineae, Caldilineae and Ktedonobacteria) that are currently part of the phylum Chloroflexi. However, a specific grouping of the classes Chloroflexi and Thermomicrobia (as well as ‘Thermobaculum’) is supported by both phylogenetic means and the identified CSIs. Based upon these results, it is suggested that the phylum Chloroflexi “sensu stricto” should be comprised only of the classes Chloroflexi and Thermomicrobia and the other four classes (viz. Dehalococcoidetes, Anaerolineae, Caldilineae and Ktedonobacteria), which are at present part of this “superphylum” should be regarded as taxa related to the phylum Chloroflexi “sensu stricto”, awaiting more detailed investigations to clarify their relationships to each other and other phyla of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Article  PubMed  CAS  Google Scholar 

  • Bhandari V, Gupta RS (2012) Molecular signatures for the phylum Synergistetes and some of its subclades. Antonie van Leeuwenhoek. doi:10.1007/s10482-012-9759-2

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW (2001a) Class, “Chloroflexi”. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic bacteria, 2nd edn, vol 1. Springer Verlag, New York, pp 427

  • Castenholz RW (2001b) Order II. “Herpetosiphonales”. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic bacteria, 2nd edn, vol 1. Springer Verlag, New York, pp 444–446

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Collins AM, Xin Y, Blankenship RE (2009) Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii. Biochim Biophys Acta 1787:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Euzeby JP (2011) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr/classifphyla.html. Accessed 20 July 2012

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22(521–65):521–565

    Article  PubMed  CAS  Google Scholar 

  • Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101:45–54

    Article  PubMed  Google Scholar 

  • Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    Article  PubMed  CAS  Google Scholar 

  • Garrity GM, Holt JG (2001a) Phylum BVI, Chloroflexi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology : The Archaea and the deeply branching and phototrophic bacteria, vol 1. 2nd edn. Springer, New York, pp 427–446

  • Garrity GM, Holt JG (2001b) Phylum BVIi. Thermomicrobia phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic Bacteria, vol 1. 2nd edn. Springer, New York, pp 447–450

  • Garrity GM, Bell JA, Lilburn TG (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT (eds) Berge1y’s manual of systematic bacteriology. Springer, New York, pp 159–220

    Chapter  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2010a) Applications of conserved indels for understanding microbial phylogeny. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 135–150

    Google Scholar 

  • Gupta RS (2010b) Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. Photosynth Res 104:357–372

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol. doi:10.1093/molbev/ss145

  • Gupta RS, Bhandari V (2011) Phylogeny and molecular signatures for the phylum thermotogae and its subgroups. Antonie Van Leeuwenhoek 100:1–34

    Article  PubMed  Google Scholar 

  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61:423–434

    Article  PubMed  Google Scholar 

  • Gupta RS, Johari V (1998) Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-Thermus group and Cyanobacteria. J Mol Evol 46:716–720

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS, Shami A (2011) Molecular signatures for the Crenarchaeota and the Thaumarchaeota. Antonie Van Leeuwenhoek 99:133–157

    Article  PubMed  Google Scholar 

  • Gupta RS, Mukhtar T, Singh B (1999) Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol 32:893–906

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Pierson BK (2006) The Family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 815–842

    Google Scholar 

  • Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Stackebrandt E (2004) Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54:2049–2051

    Article  PubMed  Google Scholar 

  • Ivanovsky RN, Fal YI, Berg IA et al (1999) Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6. Microbiology 145(Pt 7):1743–1748

    Article  PubMed  CAS  Google Scholar 

  • Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM (2000) Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50(Pt 4):1529–1537

    Article  PubMed  Google Scholar 

  • Kiss H, Cleland D, Lapidus A et al (2010) Complete genome sequence of ‘Thermobaculum terrenum’ type strain (YNP1). Stand Genomic Sci 3:153–162

    Article  PubMed  Google Scholar 

  • Kiss H, Nett M, Domin N et al (2011) Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114–95T). Stand Genomic Sci 5:356–370

    Article  PubMed  CAS  Google Scholar 

  • Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa T (2011) The phylogenetic placement of the non-phototrophic, Gram-positive thermophile ‘Thermobaculum terrenum’ and branching orders within the phylum ‘Chloroflexi’ inferred from gene order comparisons. Int J Syst Evol Microbiol 61:1944–1953

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov BB, Ivanovsky RN, Keppen OI et al (2011) Draft genome sequence of the anoxygenic filamentous phototrophic bacterium Oscillochloris trichoides subsp. DG-6. J Bacteriol 193:321–322

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lu GN, Tao XQ, Huang W, Dang Z, Li Z, Liu CQ (2010) Dechlorination pathways of diverse chlorinated aromatic pollutants conducted by Dehalococcoides sp. strain CBDB1. Sci Total Environ 408:2549–2554

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Klenk H-P (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 49–65

    Chapter  Google Scholar 

  • McMurdie PJ, Behrens SF, Muller JA et al (2009) Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet 5:e1000714

    Article  PubMed  Google Scholar 

  • Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Naushad HS, Gupta RS (2012) Molecular signatures (conserved indels) in protein sequences that are specific for the order Pasteurellales and distinguish two of its main clades. Antonie Van Leeuwenhoek 101:105–124

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248

    Article  PubMed  CAS  Google Scholar 

  • Pati A, Labutti K, Pukall R et al (2010) Complete genome sequence of Sphaerobacter thermophilus type strain (S 6022). Stand Genomic Sci 2:49–56

    Article  PubMed  Google Scholar 

  • Pierson BK (1994) The emergence, diversification, and role of photosynthetic eubacteria. In: Benston S (ed) Early Life on Earth: Nobel Symposium No. 84, Columbia University Press, New York, pp 161–180

  • Pierson BK (2001) Family 1. “Chloroflexaceae” filamentous anoxygenic phototrophic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic bacteria, 2nd edn, vol 1. Springer Verlag, New York, pp 427–429

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

  • Pierson BK, Castenholz RW (1992) The Family Chloroflexaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, New York, pp 3754–3775

    Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA, Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Collins AM, Liljeroos L et al (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE et al (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (2010) A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC (2011) Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol 13:279–282

    Article  PubMed  Google Scholar 

  • Taisova AS, Keppen OI, Lukashev EP, Arutyunyan AM, Fetisova ZG (2002) Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides. Photosynth Res 74:73–85

    Article  PubMed  CAS  Google Scholar 

  • Takaichi S, Maoka T, Yamada M, Matsuura K, Haikawa Y, Hanada S (2001) Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii. Plant Cell Physiol 42:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Barry K, Chertkov O et al (2011a) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Tang YJ, Blankenship RE (2011b) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:165

    PubMed  CAS  Google Scholar 

  • Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., family for the gliding, filamentous phototrophic green bacteria. Int J Syst Bacteriol 26:74–75

    Google Scholar 

  • Van de PY, De Wachter R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K et al (2009a) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Raymond J, Wu M et al (2009b) Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS ONE 4:e4207

    Article  PubMed  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A (2010) Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria. Int J Syst Evol Microbiol 60:1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S et al (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Rash BA, Rainey FA, Moe WM (2009) Detection and quantification of Dehalogenimonas and “Dehalococcoides” populations via PCR-based protocols targeting 16S rRNA genes. Appl Environ Microbiol 75:7560–7564

    Article  PubMed  CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J et al (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Natural Science and Engineering Research Council of Canada. We thank Mobolaji Adeolu for helpful comments and reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.S., Chander, P. & George, S. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov.. Antonie van Leeuwenhoek 103, 99–119 (2013). https://doi.org/10.1007/s10482-012-9790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9790-3

Keywords

Navigation