Skip to main content

Advertisement

Log in

Molecular signatures for the Crenarchaeota and the Thaumarchaeota

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales—3 CSIs and 169 SPs, Thermoproteales—5 CSIs and 25 SPs, Desulfurococcales—4 SPs, and Sulfolobales and Desulfurococcales—2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson I, Rodriguez J, Susanti D et al (2008) Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190:2957–2965

    Article  CAS  PubMed  Google Scholar 

  • Anderson IJ, Dharmarajan L, Rodriguez J et al (2009) The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genomics 10:145

    Article  PubMed  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, Philippe H (2002) The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol Biol Evol 19:972–977

    CAS  PubMed  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363

    Article  CAS  PubMed  Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  CAS  PubMed  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2005a) An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol 5:36

    Article  PubMed  Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005b) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6:R42

    Article  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008a) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2008b) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol Direct 3:54

    Article  PubMed  Google Scholar 

  • Brockl G, Berchtold M, Behr M, Konig H (1992) Sequence of the 5-aminolevulinic acid dehydratase-encoding gene from the hyperthermophilic methanogen, Methanothermus sociabilis. Gene 119:151–152

    Article  CAS  PubMed  Google Scholar 

  • Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Bertoldo C, Brio A, Zappia V, Porcelli M (2003) Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus: substrate specificity and primary structure analysis. Extremophiles 7:159–168

    CAS  PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM, Wai T, Leclerc D et al (2002) Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci USA 99:15554–15559

    Article  CAS  PubMed  Google Scholar 

  • Doerks T, von Mering C, Bork P (2004) Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 32:6321–6326

    Article  CAS  PubMed  Google Scholar 

  • Dorner E, Boll M (2002) Properties of 2-oxoglutarate:ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring. J Bacteriol 184:3975–3983

    Article  CAS  PubMed  Google Scholar 

  • Dutilh BE, He Y, Hekkelman ML, Huynen MA (2008a) Signature, a web server for taxonomic characterization of sequence samples using signature genes. Nucleic Acids Res 36:W470–W474

    Article  CAS  PubMed  Google Scholar 

  • Dutilh BE, Snel B, Ettema TJ, Huynen MA (2008b) Signature genes as a phylogenomic tool. Mol Biol Evol 25:1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Podar M, Graham DE et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105:8102–8107

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Rocha E, Danchin A (2005) How essential are nonessential genes? Mol Biol Evol 22:2147–2156

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Rocha EP, Danchin A (2008) Persistence drives gene clustering in bacterial genomes. BMC Genomics 9:4

    Article  PubMed  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427 (418–427)

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Gupta RS (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8:86

    Article  PubMed  Google Scholar 

  • Gao B, Parmanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 90:69–91

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Sugiman-Marangos S, Junop MS, Gupta RS (2009) Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor. BMC Struct Biol 9:40

    Article  PubMed  Google Scholar 

  • Garrett RA, Klenk H-P (eds) (2006) Archaea: evolution, physiology and molecular biology. Blackwell Publishing, Oxford

    Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum AI. Crenarchaeota phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 169

    Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    CAS  PubMed  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ, Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97:3304–3308

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361:1007–1022

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61:391–408

    Article  PubMed  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    CAS  PubMed  Google Scholar 

  • Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Griffiths E (2006) Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14:527–535

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24

    Article  PubMed  Google Scholar 

  • Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 7:106

    Article  PubMed  Google Scholar 

  • Gupta RS, Aitken K, Falah M, Singh B (1994) Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci USA 91:2895–2899

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N et al (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Article  CAS  PubMed  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  CAS  PubMed  Google Scholar 

  • Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature 384:420

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Stetter KO (2001a) Order I. Thermoproteales Zillig and Stetter 1982, 267, VP emend. Burgaff, Huber and Stetter 1997b, 659 (Effective Publicatin: Zillig and Stetter in Zillig, Stetter, Schafer, Janekovic, Wunderl, Holz and Palm 1981, 224). In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer Verlag, New York, p 170

    Google Scholar 

  • Huber H, Stetter KO (2001b) Order III. Suflolobales Stetter 189d, 496VP (Effective publication: Stetter 1989c, 2250). In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 198

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Kuo CH, Ochman H (2009) The fate of new bacterial genes. FEMS Microbiol Rev 33:38–43

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130–136

    Article  CAS  PubMed  Google Scholar 

  • Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA (2007) Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Mosc) 72:1299–1312

    Article  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    Article  PubMed  Google Scholar 

  • Liu L, Komori K, Ishino S et al (2001) The archaeal DNA primase: biochemical characterization of the p41–p46 complex from Pyrococcus furiosus. J Biol Chem 276:45484–45490

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Klenk H-P (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, Berlin, pp 49–65

    Chapter  Google Scholar 

  • Makarova KS, Koonin EV (2005) Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 8:586–594

    Article  CAS  PubMed  Google Scholar 

  • Margolin W, Wang R, Kumar M (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327

    CAS  PubMed  Google Scholar 

  • Narra HP, Cordes MH, Ochman H (2008) Structural features and the persistence of acquired proteins. Proteomics 8:4772–4781

    Article  CAS  PubMed  Google Scholar 

  • Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). Environ Microbiol 5:492–502

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740 (Review, 52 refs)

    Article  CAS  PubMed  Google Scholar 

  • Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Di Palo M, Scaloni A, Orru S, Marino G, Sannia G (1996) Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus. Biochem J 320(Pt 2):541–545

    CAS  PubMed  Google Scholar 

  • Peck JW, Bowden ET, Burbelo PD (2004) Structure and function of human Vps20 and Snf7 proteins. Biochem J 377:693–700

    Article  CAS  PubMed  Google Scholar 

  • Perevalova AA, Kolganova TV, Birkeland NK, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49:509–523

    Article  CAS  PubMed  Google Scholar 

  • Prangishvilli D, Zillig W, Gierl A, Biesert L, Holz I (1982) DNA-dependent RNA polymerase of thermoacidophilic archaebacteria. Eur J Biochem 122:471–477

    Article  CAS  PubMed  Google Scholar 

  • Rao NA, Talwar R, Savithri HS (2000) Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase–a potential target for cancer chemotherapy. Int J Biochem Cell Biol 32:405–416

    Article  CAS  PubMed  Google Scholar 

  • Ravin NV, Mardanov AV, Beletsky AV et al (2009) Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis. J Bacteriol 191:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174

    Article  CAS  PubMed  Google Scholar 

  • Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356

    Article  CAS  PubMed  Google Scholar 

  • Reysenbach A-L (2001) Class I. thermoprotei class. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 169

    Google Scholar 

  • Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  PubMed  Google Scholar 

  • Reysenbach AL, Liu Y, Banta AB et al (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447

    Article  CAS  PubMed  Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Schauss K, Focks A, Leininger S et al (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Article  CAS  PubMed  Google Scholar 

  • Siew N, Fischer D (2003) Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins 53:241–251

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373

    Article  CAS  PubMed  Google Scholar 

  • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E (2006) Defining taxonomic ranks. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed  Google Scholar 

  • Uemori T, Sato Y, Kato I, Doi H, Ishino Y (1997) A novel DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus: gene cloning, expression, and characterization. Genes Cells 2:499–512

    Article  CAS  PubMed  Google Scholar 

  • Walsh DA, Doolittle WF (2005) The real ‘domains’ of life. Curr Biol 15:R237–R240

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5:97–105

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hao B (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37:W174–W178

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2005) The power of phylogenetic comparison in revealing protein function. Proc Natl Acad Sci USA 102:3179–3180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Natural Science and Engineering Research Council of Canada. We thank Sanjan George for providing computer support in carrying out Blast searches. We also thank various investigators involved in the sequencing of archaeal genomes, particularly the DOE Joint Genome Research Institute for making the genome sequence data for Nitrosopumilus maritimus (Accession number: NC_010085.1) publicly available prior to its publication that has enabled some of the analyses reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.S., Shami, A. Molecular signatures for the Crenarchaeota and the Thaumarchaeota. Antonie van Leeuwenhoek 99, 133–157 (2011). https://doi.org/10.1007/s10482-010-9488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9488-3

Keywords

Navigation