Skip to main content

Advertisement

Log in

Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Maritime pine (Pinus pinaster Ait) is a very important forest species in Portugal. Nevertheless, both revenues and timber flows from the pine forests are substantially impacted by forest fires. We present a methodology for integrating fire risk in Maritime pine stand-level management optimization in Portugal. The objective is to determine the optimal prescription for a stand where fire risk is related to its structure and fuel load. The study optimizes the thinning treatments and the rotation length, as well as the fuel treatment schedule, i.e., reduction of understory cover during the rotation. Two components of wildfire risk—occurrence and damage—are considered. Fire damage was treated as an endogenous factor depending on the stand management schedule while fire occurrence was considered exogenous. A preliminary model that relates the expected loss to stand basal area, mean tree diameter and fire severity was used for this purpose. The article demonstrates how a deterministic stand-level growth and yield model may be combined with wildfire occurrence and damage models to optimize stand management. The Hooke-Jeeves direct search method was used to find the optimal prescription. In addition, population-based direct search methods (e.g. differential evolution and particle swarm optimization) were used for further testing purposes. Results are presented for Maritime pine stand management in Leiria National Forest in Portugal. They confirm that fuel treatments improve profitability and reduce the expected damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amacher, G. S., Ollikainen, M., & Koskella, E. (2009). Economics of forest resources (397 p.). Cambridge: MIT Press.

    Google Scholar 

  • Amacher, G., Malik, A., & Haight, R. (2005). Not getting burned: the importance of fire prevention in forest management. Land Economics, 81(2), 284–302.

    Google Scholar 

  • Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear programming. Theory and algorithms (2nd ed.). Hoboken: Wiley (ISBN 0-471-55793-5). 639 p.

    Google Scholar 

  • Bayer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies. A comprehensive introduction. Natural Computing, 1, 3–52.

    Article  Google Scholar 

  • Botequim, B., Borges, P., Carreiras, J., Oliveira, M. M. O., & Borges, J. (2009). Development of a shrub growth model in understory conditions (preliminary model) (Technical Report-7). FORCHANGE, Instituto Superior de Agronomia, Lisboa.

  • Borges, J. G., & Falcão, A. (1999). Programação dinâmica e gestão de povoamentos com estrutura regular e composição pura. Aplicação à Mata Nacional de Leiria. Revista Florestal, XII(1/2), 69–82.

    Google Scholar 

  • Brazee, R., & Mendelsohn, R. (1988). Timber harvesting with fluctuating prices. Forest Science, 34, 359–372.

    Google Scholar 

  • Bright, G., & Price, C. (2000). Valuing forest land under hazards to crop survival. Forestry, 73(4), 361–370.

    Article  Google Scholar 

  • Brodie, J. D., & Kao, C. (1979). Optimizing thinning in Douglas-fir with three-descriptor dynamic programming to account for accelerated diameter growth. Forest Science, 25(4), 665–672.

    Google Scholar 

  • Buongiorno, J., & Gilless, J. K. (1987). Forest management and economics: a primer in quantitative methods (biological resource management). (285 p.). New York: Macmillan, ISBN: 9780029487402.

    Google Scholar 

  • Castro, F. X., Tudela, A., & Sebastia, M. T. (2003). Modelling moisture content in shrubs to predict fire risk in Catalonia (Spain). Agricultural and Forest Meteorology, 116, 49–59.

    Article  Google Scholar 

  • Cauldfield, J. P. (1988). A stochastic efficiency approach for determining the economic rotation of a forest stand. Forest Science, 34(2), 441–457.

    Google Scholar 

  • Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest management to sustain ecological, economic, and social values (4th ed.) New York: McGraw-Hill.

    Google Scholar 

  • DGRF (2006). Resultados do Inventário Florestal Nacional 2005/2006, 5a Revisão, Direcção-Geral dos Recursos Florestais, Lisboa, 70 pp.

  • Dickinson, M. B., & Johnson, E. A. (2001). Fire effects on trees. In E. A. Johnson & K. Miyanishi (Eds.), Forest fires: behavior and ecological effects (pp. 477–525). San Francisco: Academic Press.

    Chapter  Google Scholar 

  • Dieter, M. (2001). Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. Forest Policy and Economics, 2, 157–166.

    Article  Google Scholar 

  • Englin, J. P., Boxall, P., & Hauer, G. (2000). An empirical examination of optimal rotations in a multiple-use forest in the presence of fire risk. Journal of Agricultural and Resource Economics, 25, 14–27.

    Google Scholar 

  • Falcão, A. (1999). DUNAS—A growth model for the National Forest of Leiria. In Proceedings of IUFRO workshop empirical and process-based models for forest tree and stand growth simulation, 21–27 Setembro 1997, Oeiras.

    Google Scholar 

  • Fernandes, P. A. M. (2001). Fire spread prediction in shrub fuels in Portugal. 2001. Forest Ecology and Management, 144(1–3), 67–74.

    Article  Google Scholar 

  • Fernandes, P. M., & Rigolot, E. (2007). The fire ecology and management of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 241, 1–13.

    Article  Google Scholar 

  • Ferreira, L., Constantino, M., & Borges, J. G. (2011a). A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Annals of Operation Research doi:10.1007/s10479-011-0845-z (Published online January 2011).

    Google Scholar 

  • Ferreira, L., Constantino, M., Borges, J. G., & Garcia-Gonzalo, J. (2011b). A stochastic dynamic programming approach to optimize short-rotation coppice systems management scheduling. An application to eucalypt plantations under wild re risk in Portugal. Submitted manuscript.

  • Finney, M. A. (1994). Modeling the spread and behavior of prescribed natural fires. In Proc. 12th international conference on fire and forest meteorology. (pp. 138–143). 26–28 October 1993, Jekyll Island, GA. Soc. Am. For.

    Google Scholar 

  • Garcia-Gonzalo, J., Marques, S., Borges, J. G., Botequim, B., Oliveira, M. M., Tomé, J., & Tomé, M. (2011). A three-step approach to post-fire mortality modelling in Maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. Forestry. doi:10.1093/forestry/CPR006.

    Google Scholar 

  • González, J. R., Palahí, M., Trasobares, T., & Pukkala, T. (2005a). A fire probability model for forest stands in Catalonia (north-east Spain). Annals of Forest Science 63:169–176.

    Article  Google Scholar 

  • González-Olabarría, J. R., Pukkala, T., & Palahí, M., (2005b). Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain). Annals of Forest Science 62:493–501.

    Article  Google Scholar 

  • González, J. R., Trasobares, T., Palahí, M., & Pukkala, T. (2007). Predicting stand damage and tree survival in burned forests in Catalonia (North-East Spain). Annals of Forest Science, 64, 733–742.

    Article  Google Scholar 

  • González-Olabarría, J. R., Palahí, M., Pukkala, T., & Trasobares, A. (2008). Optimising the management of Pinus nigra Arn. stands under endogenous risk of fire in Catalonia. Investigaciones Agrarias: Sistemas y Recursos Forestales, 17(1), 10–17.

    Google Scholar 

  • Hély, C., Bergeron, Y., & Flannigan, M. D. (2003). Modeling tree mortality following wildfire in the southeastern Canadian mixed-wood boreal forest. Forest Science, 49, 566–576.

    Google Scholar 

  • Hooke, R., & Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical problems. Journal of the Association for Computing Machinery, 8, 212–229.

    Article  Google Scholar 

  • Hyytiäinen, K. (2003). Integrating economics and ecology in stand-level timber production. Finnish Forest Research Institute, Research Papers 908: 42 pp.

  • Kao, C. (1982). Optimal stocking levels and rotation under risk. Forest Science, 28(4), 711–719.

    Google Scholar 

  • Kao, C., & Brodie, J. D. (1979). Determination of optimal thinning entry interval using dynamic programming. Forest Science, 25, 672–674.

    Google Scholar 

  • Keely, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18, 116–126.

    Article  Google Scholar 

  • Keyes, C.R., & O’Hara, K.L. (2002). Quantifying stand targets for silvicultural prevention of crown fires. Western Journal of Applied Forestry 17(2):101–109.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks, Perth, Australia, IEEE Service Center, Piscataway, NJ, IV. pp. 1942–1948.

    Google Scholar 

  • Lohmander, P., & Helles, F. (1987). Windthrow probability as a function of stand characteristics and shelter. Scandinavian Journal of Forest Research, 2(2), 227–238.

    Article  Google Scholar 

  • Marques, S., Borges, J. G., Garcia-Gonzalo, J., Moreira, F., Carreiras, J. M. B., Oliveira, M. M., Cantarinha, A., Botequim, B., & Pereira, J. M. C. (2011a). Characterization of wildfires in Portugal. Eur. J. Forest Res. doi:10.1007/s10342-010-0470-4.

  • Marques, S., Botequim, B., Garcia-Gonzalo, J., Borges, J. G., Tomé, M., & Oliveira, M. M. (2011b). Assessing wildfire risk probability in Pinus pinaster Ait. stands in Portugal. Submitted manuscript.

  • Martell, D. L. (1980). The optimal rotation of a flammable forest stand. Canadian Journal of Forest Research, 10, 30–34.

    Article  Google Scholar 

  • Martell, D. L. (2007). In A. Weintraub, C. Romero, T. Bjorndal, & R. Epstein (Eds.), Forest fire management, handbook of operations research in natural resources (pp. 489–510). Berlin: Springer.

    Google Scholar 

  • McDill, M. E., & Amateis, R. L. (1992). Measuring forest site quality using the parameters of a dimensionally compatible height growth function. Forest Science, 38(2), 409–429.

    Google Scholar 

  • Miina, J. (1996). Optimising thinning and rotation in a stand of Pinus sylvestris on a drained peatland site. Scandinavian Journal of Forest Research 11(1):182–192.

    Article  Google Scholar 

  • Miina J., (1998). Preparation of management models using simulation and optimisation. In Pukkala T., Eerikäinen K. (Eds.), Tree seedling production and management of plantation forests, University of Joensuu, Faculty of Forestry, Research Notes 68, pp. 165–180.

    Google Scholar 

  • Moreira, F., & Russo, D. (2007). Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape Ecology, 22, 1461–1476.

    Article  Google Scholar 

  • Möykkynen, T., Miina, J., & Pukkala, T. (2000). Optimising the management of a Picea abies stand under risk of butt rot. Forest Pathology, 30, 65–76.

    Article  Google Scholar 

  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313.

    Article  Google Scholar 

  • Palahí, M., & Pukkala, T. (2003). Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models. Annals of Forest Science, 60, 105–114.

    Article  Google Scholar 

  • Pasalodos-Tato, M., Pukkala, T., & Castedo-Dorado, F. (2009). Models for the optimal management of Pinus radiata D. Don in Galicia (north–western Spain) under risk of fire. Allgemeine Forst und Jagdzeitung, 180, 238–249.

    Google Scholar 

  • Pasalodos-Tato, M., Pukkala, T., & Rojo Alboreca, A. (2010). Optimal management of Pinus pinaster in Galicia (north–western Spain) under endogenous risk of fire. Int. J. Wildland Fire. In press.

  • Pollet, J., & Omi, P. N. (2002). Effect of thinning and prescribed burning on wildfire severity in ponderosa pine forests. International Journal of Wildland Fire, 11, 1–10.

    Article  Google Scholar 

  • Pukkala, T., & Miina, J. (1997). A method for stochastic multiobjective optimisation of stand management. Forest Ecology and Management, 98, 189–203.

    Article  Google Scholar 

  • Pukkala, T. (2009). Population-based methods in the optimization of stand management. Silva Fennica, 43(2), 261–274.

    Article  Google Scholar 

  • Reed, W. J. (1984). The effect of risk of fire on the optimal rotation of a forest. Journal of Environmental Economics and Management, 11(2), 180–190.

    Article  Google Scholar 

  • Reed, W. J. (1987). Protecting a forest against fire: optimal protection patterns and harvest policies. Natural Resources Modeling, 2, 23–53.

    Google Scholar 

  • Reed, W. J. (1993). The decision to conserve or harvest old-growth forest. Ecological Economics, 8(1), 45–69.

    Article  Google Scholar 

  • Reed, W. J., & Errico, D. (1985). Assessing the long-run yield of a forest stand subject to the risk of fire. Canadian Journal of Forest Research, 15(4), 680–687.

    Article  Google Scholar 

  • Roise, J. P. (1986). An approach to optimizing residual diameter class distributions when thinning even-aged stands. Forest Science, 32, 871–881.

    Google Scholar 

  • Routledge, R. D. (1980). The effect of potential catastrophic mortality and others unpredictable events on optimal forest rotation policy. Forest Science, 26(3), 389–399.

    Google Scholar 

  • Simões, S. M. (2006). Expansão ao Alentejo e Algarve de uma curva de acumulaçao pós-fogo para a biomassa arbustiva. Tese de Mestrado, Instituto Superior de Agronomia, Universidade Técinica de Lisboa, Lisboa.

  • Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  Google Scholar 

  • Thorsen, B. J., & Helles, F. (1998). Optimal stand management with endogenous risk of sudden destruction. Forest Ecology and Management, 108, 287–299.

    Article  Google Scholar 

  • Van Wagner, C. E. (1973). Height of crown scorch in forest fires. Canadian Journal of Forest Research 3:373–378.

    Article  Google Scholar 

  • Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research, 7, 23–34.

    Article  Google Scholar 

  • Valsta, L. T. (1990). A comparison of numerical methods for optimizing even aged stand management. Canadian Journal of Forest Research, 20, 961–969.

    Article  Google Scholar 

  • Vélez, R. (2002). Causes of fires in the Mediterranean Basin. In EFI proceedings (Vol. 45, pp. 35–42).

    Google Scholar 

  • Vega, J. A. (2001). Efectos del fuego prescrito sobre el suelo en pinares de Pinus pinaster Ait. de Galicia. PhD Thesis, Universidad Politécnica de Madrid, ETSIM, Madrid.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garcia-Gonzalo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Gonzalo, J., Pukkala, T. & Borges, J.G. Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Ann Oper Res 219, 379–395 (2014). https://doi.org/10.1007/s10479-011-0908-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0908-1

Keywords

Navigation