Skip to main content
Log in

A kd-tree algorithm to discover the boundary of a black box hypervolume

Or how to peel potatoes by recursively cutting them in halves

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In the framework of Decision Support Systems, mathematical viability theory can be used to classify the states and the trajectories of a dynamical system evolving in a set of desirable states. Since obtaining this viability theory output is a complex and computationally intensive task, we propose in this article to consider a compact representation of this set and its approximations using kd-trees. Given a subset of \(\mathbb {R}^{n}\) of non null measure, defined through a black box function (an oracle), and assuming some regularity properties on this set, we build a kd-tree based data structure representing this set, which can be used as an input to the viability algorithm. This data structure has a complexity close to gaining one dimension, both in terms of space and in number of calls to the oracle, compared to the exhaustive computation on a regular grid. This data structure produces a characteristic function (i.e. a function that can be used in lieu of the oracle), allows to measure the volume of the set, and to compute the distance to the boundary of the set for any point. It offers distance guarantee between the points of the original set and its kd-tree approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, I., de Aldama, R., Martin, S., Reuillon, R.: Assessing the Resilience of Socio-Ecosystems: Coupling Viability Theory and Active Learning with kd-Trees. Application to Bilingual Societies. In: proceedings of IJCAI, pp 2776–2782 (2013). http://ijcai.org/papers13/Papers/IJCAI13-409.pdf

  2. Aubin, J.P., Bayen, A., Saint-Pierre, P.: Viability Theory: New Directions. Springer (2011). doi:10.1007/978-3-642-16684-6. http://hal.inria.fr/inria-00636570

  3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975). doi:10.1145/361002.361007

    Article  MATH  MathSciNet  Google Scholar 

  4. Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. SE-5(4), 333–340 (1979). doi:10.1109/TSE.1979.234200

    Article  Google Scholar 

  5. Coquelin, P.A., Martin, S., Munos, R.: A dynamic programming approach to viability problems. In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL 2007, pp 178–184 (2007)

  6. Deffuant, G., Chapel, L., Martin, S.: Approximating Viability Kernels With Support Vector Machines. IEEE Trans. Autom. Control 52(5), 933–937 (2007). doi:10.1109/TAC.2007.895881 [ http://hal.archives-ouvertes.fr/hal-00616841]

    Article  MathSciNet  Google Scholar 

  7. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31 (8), 651–666 (2010). doi:10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  8. Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classifiers. Mach. Learn. 54(2), 125–152 (2004)

    Article  MATH  Google Scholar 

  9. Moore, A.W.: An intoductory tutorial on kd-trees (1991). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.818

  10. Rosenthal, P., Linsen, L.: Direct isosurface extraction from scattered volume data. In: Ertl, T., Joy, K., Santos, B. (eds.) EUROVIS - Eurographics /IEEE VGTC Symposium on Visualization, Eurographics Association, pp 99–106 (2006), 10.2312/VisSym/EuroVis06/099-106. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.2313

  11. Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math. Optim. 29, 187–209 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648. University of Wisconsin–Madison (2009)

  13. Sicard, M., Perrot, N., Reuillon, R., Mesmoudi, S., Alvarez, I., Martin, S.: A viability approach to control food processes: Application to a camembert cheese ripening process. Food Control 23(2), 312–319 (2012)

    Article  Google Scholar 

  14. Villani, C.: Mesures de hausdorff (2004). http://math.univ-lyon1.fr/homes-www/villani/Cours/PDFFILES/chap5.pdf

  15. Wald, I., Mark, W.R., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S.G., Shirley, P.: State of the art in ray tracing animated scenes. Comput. Graphics Forum 28(6), 1691–1722 (2009). doi:10.1111/j.1467-8659.2008.01313.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouquier, JB., Alvarez, I., Reuillon, R. et al. A kd-tree algorithm to discover the boundary of a black box hypervolume. Ann Math Artif Intell 75, 335–350 (2015). https://doi.org/10.1007/s10472-015-9456-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-015-9456-8

Keywords

Mathematics Subject Classifications (2010)

Navigation