, Volume 16, Issue 6, pp 1647-1660

Zaks’ Lemma for Coherent Rings

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Let A be a left and right coherent ring and C A (resp., $C_{A^{\mathrm{op}}}$ ) a minimal cogenerator for right (resp., left) A-modules. We show that $\mathrm{flat \ dim \ }C_{A} = \mathrm{flat \ dim \ }C_{A^{\mathrm{op}}}$ whenever flat dim C A  < ∞ and $\mathrm{flat \ dim \ }C_{A^{\mathrm{op}}} < \infty$ , and that $\mathrm{flat \ dim \ }C_{A} = \mathrm{flat \ dim \ }C_{A^{\mathrm{op}}} < \infty$ if and only if the finitely presented right A-modules have bounded Gorenstein dimension.

Presented by Kenneth Goodearl.