Algebras and Representation Theory

, Volume 14, Issue 1, pp 41–55

Fusion Rings Arising from Normal Hopf Subalgebras

Authors

    • Inst. of Math. “Simion Stoilow” of the Romanian Academy
  • Vicentiu Pasol
    • Inst. of Math. “Simion Stoilow” of the Romanian Academy
Article

DOI: 10.1007/s10468-009-9174-1

Cite this article as:
Burciu, S. & Pasol, V. Algebr Represent Theor (2011) 14: 41. doi:10.1007/s10468-009-9174-1

Abstract

For any normal commutative Hopf subalgebra K = kG of a semisimple Hopf algebra we describe the ring inside kG obtained by the restriction of H-modules. If G = \(G={\mathbb{Z}}\)p this ring determines a fusion ring and we give a complete description for it. The case \(G={\mathbb{Z}}_{p^n}\) and some other applications are presented.

Keywords

Hopf algebrasNormal Hopf subalgebrasFrobenius-PerronRepresentations of Hopf algebras

Mathematics Subject Classification (2000)

16W30

Copyright information

© Springer Science+Business Media B.V. 2009