Bai, Z., Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample problem. *Statistics Sinica*, *6*, 311–329.

Brown, B. M., Chen, S. X. (1998). Combined and least squares empirical likelihood. *Annals of the Institue of Statistical Mathematics*, *50*, 697–714.

Chen, J. H., Variyath, A. M., Abraham, B. (2008). Adjusted empirical likelihood and its properties. *Journal of Computational and Graphical Statistics*, *17*, 426–443.

Chen, S. X., Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *The Annals of Statistics*, *38*, 808–835.

Chen, S. X., Peng, L., Qin, Y.-L. (2009). Effects of data dimension on empirical likelihood. *Biometrika*, *96*, 1–12.

Chen, S. X., Zhang, L.-X., Zhong, P.-S. (2010). Tests for high-dimensional covariance matrices. *Journal of American Statistian Assocciation*, *105*, 810–815.

DasGupta, A. (2008). *Asymptotic theory of statistics and probability*. New York: Springer.

DiCiccio, T. J., Hall, P., Romano, J. P. (1991). Empirical likelihood is Bartlett correctable. *The Annals of Statistics*, *19*, 1053–1061.

Emerson, S. C., Owen, A. B. (2009). Calibration of the empirical likelihood method for a vector mean. *Econometrical Journal of Statisitcs*, *3*, 1161–1192.

Hall, P. (1992).

*The bootstrap and Edgeworth expansion*. New York: Springer.

Google ScholarHall, P., Hyde, C. C. (1992). *Martingale central limit theory and its applications*. New York: Academic Press.

Hjort, H. L., Mckeague, I. W., Van Keilegom, I. (2009). Extending the scope of empirical likelihood. *The Annals of Statistics*, *37*, 1079–1115.

Liu, Y., Chen, J. (2010). Adjusted Empirical Likelihood with High-Order Precision. *The Annals of Statistics*, *38*, 1341–1362.

Liu, Y., Yu, C. W. (2010). Bartlett Correctable Two-Sample Adjusted Empirical Likelihood. *Journal of Multivariate Analysis*, *101*, 1701–1711.

Mardia, K. V., Kent, J. T., Bibby, J. M. (1979). *Multivariate analysis*. London: Academic Press.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, *75*, 237–249.

Owen, A. B. (1990). Empirical likelihood ratio confidence regions. *The Annals of Statistics*, *18*, 90–120.

Owen, A. B. (2001). *Empirical likelihood*. New York: Chapman & Hall/CRC.

Portnoy, S. (1985). Asymptotic behavior of M-estimations of \(p\) regression parameters with \(p^2/n\) is large. II. normal approximation. *The Annals of Statistics*, *13*, 1403–1417.

Qin, J., Lawless, J. (1994). Empirical likelihood and general equations. *The Annals of Statistics*, *22*, 300–325.

Schott, J. R. (2005). Testing for complete independence in high dimensions. *Biometrika*, *92*, 951–956.

Tang, C. Y., Leng, C. (2005). Penalized high-dimensional empirical likelihood. *Biometrika*, *97*, 905–920.

Tsao, M. (2004). Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. *The Annals of Statistics*, *32*, 1215–1221.

Vapnik, V., Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities. *Theory of Probability and its Applications*, *16*, 264–280.