Article

Artificial Intelligence Review

, Volume 29, Issue 2, pp 123-161

First online:

Machine learning in digital games: a survey

  • Leo GalwayAffiliated withSchool of Computing and Information Engineering, Faculty of Engineering, University of Ulster Email author 
  • , Darryl CharlesAffiliated withSchool of Computing and Information Engineering, Faculty of Engineering, University of Ulster
  • , Michaela BlackAffiliated withSchool of Computing and Information Engineering, Faculty of Engineering, University of Ulster

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Artificial intelligence for digital games constitutes the implementation of a set of algorithms and techniques from both traditional and modern artificial intelligence in order to provide solutions to a range of game dependent problems. However, the majority of current approaches lead to predefined, static and predictable game agent responses, with no ability to adjust during game-play to the behaviour or playing style of the player. Machine learning techniques provide a way to improve the behavioural dynamics of computer controlled game agents by facilitating the automated generation and selection of behaviours, thus enhancing the capabilities of digital game artificial intelligence and providing the opportunity to create more engaging and entertaining game-play experiences. This paper provides a survey of the current state of academic machine learning research for digital game environments, with respect to the use of techniques from neural networks, evolutionary computation and reinforcement learning for game agent control.

Keywords

Machine learning Computational intelligence Digital games Game AI