, Volume 27, Issue 4, pp 295-307

An evaluation of one-class classification techniques for speaker verification

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Speaker verification is a challenging problem in speaker recognition where the objective is to determine whether a segment of speech in fact comes from a specific individual. In supervised machine learning terms this is a challenging problem as, while examples belonging to the target class are easy to gather, the set of counter-examples is completely open. This makes it difficult to cast this as a supervised classification problem as it is difficult to construct a representative set of counter examples. So we cast this as a one-class classification problem and evaluate a variety of state-of-the-art one-class classification techniques on a benchmark speech recognition dataset. We construct this as a two-level classification process whereby, at the lower level, speech segments of 20 ms in length are classified and then a decision on an complete speech sample is made by aggregating these component classifications. We show that of the one-class classification techniques we evaluate, Gaussian Mixture Models shows the best performance on this task.