1.

Banks J. S. (1985) Sophisticated voting outcomes and agenda control. Social Choice and Welfare 1(4): 295–306

MATHCrossRef2.

Baumeister, D., & Rothe, J. (2010). Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules. In *Proceedings of ECAI’10* (pp. 1019–1020). Lisbon, Portugal.

3.

Betzler, N., & Dorn, B. (2009). Towards a dichotomy of finding possible winners in elections based on Scoring rules. In *Proceedings of MFCS’09, Lecture notes in computer science* (Vol. 5734, pp. 124–136). Novy Smokovec, High Tatras, Slovakia.

4.

Betzler N., Dorn B. (2010) Towards a dichotomy for the possible winner problem in elections based on scoring rules. Journal of Computer and System Sciences 76(8): 812–836

MathSciNetMATHCrossRef5.

Betzler, N., Hemmann, S., & Niedermeier, R. (2009). A multivariate complexity analysis of determining possible winners given incomplete votes. In *Proceedings of IJCAI’09* (pp. 53–58). Pasadena, CA.

6.

Brandt, F., Fischer, F., & Harrenstein, P. (2007). The computational complexity of choice sets. In *Proceedings of TARK’07* (pp. 82–91). Brussels, Belgium.

7.

Brandt F., Fischer F., Harrenstein P. (2009) The computational complexity of choice sets. Mathematical Logic Quarterly 55(4): 444–459

MathSciNetMATHCrossRef8.

Chevaleyre, Y., Lang, J., Maudet, N., & Monnot, J. (2010). Possible winners when new candidates are added: The case of scoring rules. In *Proceedings of AAAI’10*, Atlanta, GA.

9.

Conitzer, V., & Sandholm, T. (2002). Complexity of manipulating an election with few candidates. In *Proceedings of AAAI’02* (pp. 314–319). Edmonton, AB, Canada.

10.

Conitzer, V., & Sandholm, T. (2002). Vote elicitation: Complexity and strategy-proofness. In *Proceedings of AAAI’02* (pp. 392–397). Edmonton, AB, Canada.

11.

Conitzer V., Sandholm T., Lang J. (2007) When are elections with few candidates hard to manipulate. Journal of the ACM 54(3): 1–33

MathSciNetCrossRef12.

Copeland, A. H. (1951). A reasonable social welfare function. University of Michigan Seminar on Applications of Mathematics to the Social Sciences.

13.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. (2002) Introduction to algorithms. MIT Press, Cambridge

14.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L. A., & Rothe J. (2007). Llull and Copeland voting broadly resist bribery and control. In *Proceedings of AAAI’07* (pp. 724–730). Vancouver, Canada.

15.

Faliszewski P., Hemaspaandra E., Hemaspaandra L.A., Rothe J. (2009) Llull and Copeland voting computationally resist bribery and constructive control. Journal of Artificial Intelligence Research 35: 275–341

MathSciNetMATH16.

Fischer, F. A., Procaccia, A. D., & Samorodnitsky, A. (2009). A new perspective on implementation by voting trees. In *Proceedings of EC’09* (pp. 31–40). Stanford, CA.

17.

Fischer, F. A., Procaccia, A. D., & Samorodnitsky, A. (2010). A new perspective on implementation by voting trees.

*Random Structures and Algorithms*. doi:

10.1002/rsa.20336.

18.

Garey M. R., Johnson D. S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York

MATH19.

Hazon, N., Aumann, Y., Kraus, S., & Wooldridge, M. (2008). Evaluation of election outcomes under uncertainty. In *Proceedings of AAMAS’08* (Vol. 2, pp. 959–966). Estoril, Portugal.

20.

Hazon, N., Dunne, P. E., Kraus, S., & Wooldridge, M. (2008). How to rig elections and competitions. In *Proceedings of COMSOC’08*, Liverpool, UK.

21.

Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. In *Proceedings of IJCAI’05 Multidisciplinary Workshop on Advances in Preference Handling*, Edinburgh, Scotland, UK.

22.

Laffond G., Laslier J.-F., Le Breton M. (1995) Condorcet choice correspondences: A set-theoretical comparison. Mathematical Social Sciences 30: 23–35

MathSciNetMATHCrossRef23.

Lang, J., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Winner determination in sequential majority voting. In *Proceedings of IJCAI’07* (pp. 1372–1377). Hyderabad, India.

24.

Laslier J.-F. (1997) Tournament solutions and majority voting. Springer-Verlag, Heidelberg

MATHCrossRef25.

Miller N. (1980) A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting. American Journal of Political Science 24: 68–69

CrossRef26.

Moulin H. (1988) Axioms of cooperative decision making. Cambridge University Press, Cambridge

MATH27.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Incompleteness and incomparability in preference aggregation. In *Proceedings of IJCAI’07* (pp. 1464–1469). Hyderabad, India.

28.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh T. (2008). Dealing with incomplete agents’ preferences and an uncertain agenda in group decision making via sequential majority voting. In *Proceedings of KR’08* (pp. 571–578). Sydney, Australia.

29.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Possible and necessary winners in voting trees: Majority graphs vs. profiles. In *Proceedings of AAMAS’11*, Taipei, Taiwan.

30.

Procaccia, A. D., Zohar, A., Peleg, Y., & Rosenschein, J. S. (2007). Learning voting trees. In *Proceedings of AAAI’07* (pp. 110–115). Vancouver, BC, Canada.

31.

Procaccia A. D., Zohar A., Peleg Y., Rosenschein J. S. (2009) The learnability of voting rules. Artificial Intelligence 173(12–13): 1133–1149

MathSciNetMATHCrossRef32.

Schwartz T. (1972) Rationality and the myth of the maximum. Nous 6(2): 97–117

CrossRef33.

Slater P. (1961) Inconsistencies in a schedule of paired comparisons. Biometrika 48(3–4): 303–312

34.

Trick, M. (2006). Small binary voting trees. In *Proceedings of COMSOC’06* (pp. 500–511). Amsterdam, Netherlands.

35.

Vassilevska Williams, V. (2010). Fixing a tournament. In *Proceedings of AAAI’10*, Atlanta, GA.

36.

Vu, T., Altman, A., & Shoham, Y. (2009). On the complexity of schedule control problems for knockout tournaments. In *Proceedings of AAMAS’09* (Vol. 1, pp. 225–232). Budapest, Hungary.

37.

Walsh, T. (2008). Complexity of terminating preference elicitation. In *Proceedings of AAMAS’08* (pp. 967–974). Estoril, Portugal.

38.

Xia, L., & Conitzer, V. (2008). Determining possible and necessary winners under common voting rules given partial orders. In *Proceedings of AAAI’08* (pp. 196–201). Chicago, IL.

39.

Xia, L., & Conitzer, V. (2010). Determining possible and necessary winners under common voting rules given partial orders. A longer unpublished version of [38].

http://www.cs.duke.edu/~lxia.