1.

Banks J. S. (1985) Sophisticated voting outcomes and agenda control. Social Choice and Welfare 1(4): 295–306

MATHCrossRefGoogle Scholar2.

Baumeister, D., & Rothe, J. (2010). Taking the final step to a full dichotomy of the possible winner problem in pure scoring rules. In *Proceedings of ECAI’10* (pp. 1019–1020). Lisbon, Portugal.

3.

Betzler, N., & Dorn, B. (2009). Towards a dichotomy of finding possible winners in elections based on Scoring rules. In *Proceedings of MFCS’09, Lecture notes in computer science* (Vol. 5734, pp. 124–136). Novy Smokovec, High Tatras, Slovakia.

4.

Betzler N., Dorn B. (2010) Towards a dichotomy for the possible winner problem in elections based on scoring rules. Journal of Computer and System Sciences 76(8): 812–836

MathSciNetMATHCrossRefGoogle Scholar5.

Betzler, N., Hemmann, S., & Niedermeier, R. (2009). A multivariate complexity analysis of determining possible winners given incomplete votes. In *Proceedings of IJCAI’09* (pp. 53–58). Pasadena, CA.

6.

Brandt, F., Fischer, F., & Harrenstein, P. (2007). The computational complexity of choice sets. In *Proceedings of TARK’07* (pp. 82–91). Brussels, Belgium.

7.

Brandt F., Fischer F., Harrenstein P. (2009) The computational complexity of choice sets. Mathematical Logic Quarterly 55(4): 444–459

MathSciNetMATHCrossRefGoogle Scholar8.

Chevaleyre, Y., Lang, J., Maudet, N., & Monnot, J. (2010). Possible winners when new candidates are added: The case of scoring rules. In *Proceedings of AAAI’10*, Atlanta, GA.

9.

Conitzer, V., & Sandholm, T. (2002). Complexity of manipulating an election with few candidates. In *Proceedings of AAAI’02* (pp. 314–319). Edmonton, AB, Canada.

10.

Conitzer, V., & Sandholm, T. (2002). Vote elicitation: Complexity and strategy-proofness. In *Proceedings of AAAI’02* (pp. 392–397). Edmonton, AB, Canada.

11.

Conitzer V., Sandholm T., Lang J. (2007) When are elections with few candidates hard to manipulate. Journal of the ACM 54(3): 1–33

MathSciNetCrossRefGoogle Scholar12.

Copeland, A. H. (1951). A reasonable social welfare function. University of Michigan Seminar on Applications of Mathematics to the Social Sciences.

13.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. (2002) Introduction to algorithms. MIT Press, Cambridge

Google Scholar14.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L. A., & Rothe J. (2007). Llull and Copeland voting broadly resist bribery and control. In *Proceedings of AAAI’07* (pp. 724–730). Vancouver, Canada.

15.

Faliszewski P., Hemaspaandra E., Hemaspaandra L.A., Rothe J. (2009) Llull and Copeland voting computationally resist bribery and constructive control. Journal of Artificial Intelligence Research 35: 275–341

MathSciNetMATHGoogle Scholar16.

Fischer, F. A., Procaccia, A. D., & Samorodnitsky, A. (2009). A new perspective on implementation by voting trees. In *Proceedings of EC’09* (pp. 31–40). Stanford, CA.

17.

Fischer, F. A., Procaccia, A. D., & Samorodnitsky, A. (2010). A new perspective on implementation by voting trees.

*Random Structures and Algorithms*. doi:

10.1002/rsa.20336.

18.

Garey M. R., Johnson D. S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York

MATHGoogle Scholar19.

Hazon, N., Aumann, Y., Kraus, S., & Wooldridge, M. (2008). Evaluation of election outcomes under uncertainty. In *Proceedings of AAMAS’08* (Vol. 2, pp. 959–966). Estoril, Portugal.

20.

Hazon, N., Dunne, P. E., Kraus, S., & Wooldridge, M. (2008). How to rig elections and competitions. In *Proceedings of COMSOC’08*, Liverpool, UK.

21.

Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. In *Proceedings of IJCAI’05 Multidisciplinary Workshop on Advances in Preference Handling*, Edinburgh, Scotland, UK.

22.

Laffond G., Laslier J.-F., Le Breton M. (1995) Condorcet choice correspondences: A set-theoretical comparison. Mathematical Social Sciences 30: 23–35

MathSciNetMATHCrossRefGoogle Scholar23.

Lang, J., Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Winner determination in sequential majority voting. In *Proceedings of IJCAI’07* (pp. 1372–1377). Hyderabad, India.

24.

Laslier J.-F. (1997) Tournament solutions and majority voting. Springer-Verlag, Heidelberg

MATHCrossRefGoogle Scholar25.

Miller N. (1980) A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting. American Journal of Political Science 24: 68–69

CrossRefGoogle Scholar26.

Moulin H. (1988) Axioms of cooperative decision making. Cambridge University Press, Cambridge

MATHGoogle Scholar27.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2007). Incompleteness and incomparability in preference aggregation. In *Proceedings of IJCAI’07* (pp. 1464–1469). Hyderabad, India.

28.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh T. (2008). Dealing with incomplete agents’ preferences and an uncertain agenda in group decision making via sequential majority voting. In *Proceedings of KR’08* (pp. 571–578). Sydney, Australia.

29.

Pini, M. S., Rossi, F., Venable, K. B., & Walsh, T. (2011). Possible and necessary winners in voting trees: Majority graphs vs. profiles. In *Proceedings of AAMAS’11*, Taipei, Taiwan.

30.

Procaccia, A. D., Zohar, A., Peleg, Y., & Rosenschein, J. S. (2007). Learning voting trees. In *Proceedings of AAAI’07* (pp. 110–115). Vancouver, BC, Canada.

31.

Procaccia A. D., Zohar A., Peleg Y., Rosenschein J. S. (2009) The learnability of voting rules. Artificial Intelligence 173(12–13): 1133–1149

MathSciNetMATHCrossRefGoogle Scholar32.

Schwartz T. (1972) Rationality and the myth of the maximum. Nous 6(2): 97–117

CrossRefGoogle Scholar33.

Slater P. (1961) Inconsistencies in a schedule of paired comparisons. Biometrika 48(3–4): 303–312

Google Scholar34.

Trick, M. (2006). Small binary voting trees. In *Proceedings of COMSOC’06* (pp. 500–511). Amsterdam, Netherlands.

35.

Vassilevska Williams, V. (2010). Fixing a tournament. In *Proceedings of AAAI’10*, Atlanta, GA.

36.

Vu, T., Altman, A., & Shoham, Y. (2009). On the complexity of schedule control problems for knockout tournaments. In *Proceedings of AAMAS’09* (Vol. 1, pp. 225–232). Budapest, Hungary.

37.

Walsh, T. (2008). Complexity of terminating preference elicitation. In *Proceedings of AAMAS’08* (pp. 967–974). Estoril, Portugal.

38.

Xia, L., & Conitzer, V. (2008). Determining possible and necessary winners under common voting rules given partial orders. In *Proceedings of AAAI’08* (pp. 196–201). Chicago, IL.

39.

Xia, L., & Conitzer, V. (2010). Determining possible and necessary winners under common voting rules given partial orders. A longer unpublished version of [38].

http://www.cs.duke.edu/~lxia.