Skip to main content

Advertisement

Log in

Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha−1) and high (87.6 ± 3.3 Mg C ha−1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha−1) and traditional agroforestry (68.4 ± 4.9 Mg C ha−1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha−1 and between oil palm: 10.6 ± 0.5 Mg C ha−1) and the strip area (17.0 ± 1.4 Mg C ha−1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha−1 year−1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baena ARC, Falesi IC (1999) Avaliação do potencial químico e físico dos solos sob diversos sistemas de uso da terra na Colônia Agrícola de Tomé-Açu, Estado do Pará. Boletim de Pesquisa, 18. Embrapa Amazônia Oriental, Belém, p 23

  • Bayer C, Dick DP, Ribeiro GM, Scheuermann KK (2002) Carbon stocks in organic matter fractions as affected by land use and soil management, with emphasis on no-tillage effect. Cienc Rural 32:401–406

    Article  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, Moraes JL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Article  Google Scholar 

  • Brady NC (1996) Alternatives to slash-and-burn: a global imperative. Agric Ecosys Environ 58:3–11

    Article  Google Scholar 

  • Brancher T (2010) Estoque e ciclagem de carbono de sistemas agroflorestais em Tomé-Açu, Amazônia Oriental. Thesis, Universidade Federal do Pará, Belém

  • Brasil (2011) Programa nacional de produção e uso do biodiesel. http://www.biodiesel.gov.br/. Accessed 5 Apr 2011

  • Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biol Fertil Soils 27:168–172

    Article  CAS  Google Scholar 

  • Davidson EA, Sá TDDA, Carvalho CJR, Figueiredo RDO, Kato MDSA, Kato OR, Ishida FY (2008) An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia. Glob Change Biol 14:1–10

    Article  Google Scholar 

  • Denich M, Vielhauer K, Kato M, Block A, Kato OR, Sá T, Lücke W, Vlek PLG (2004) Mechanized land preparation in forest-based fallow systems: the experience from Eastern Amazonia. Agrofor Syst 61–62(1–3):91–106

    Article  Google Scholar 

  • Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103(2):365–373

    Article  CAS  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel-Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 year. Soil Tillage Res 81:87–95

    Article  Google Scholar 

  • Duxbury JM, Smith MS, Doran JW (1989) Soil organic matter as a source and sink of plant nutrients. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii, Honolulu, pp 33–67

    Google Scholar 

  • Embrapa (1997) Manual de metodos de analise de solo, 2nd edn. EMBRAPA-CNPS, Rio de Janeiro

    Google Scholar 

  • Forseth IN, Teramura AH (1987) Field photosynthesis, microclimate and water relations of an exotic temperate liana, Pueraria lobata, kudzu. Oecologia 71:262–267

    Article  Google Scholar 

  • Frazão LA, Paustian K, Pellegrino Cerri CE, Cerri CC (2012) Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. GCB Bioenergy. doi:10.1111/j.1757-1707.2012.01196.x

    Google Scholar 

  • Häger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor Syst. doi:10.1007/s10457-012-9545-1

    Google Scholar 

  • Hairiah K, Sitompul SM, van Noordwijk M, Palm CA (2001) Carbon stocks of tropical land use systems as part of the global carbon balance: effects of forest conversion and options for clean development activities. Alternatives to slash-and-burn (ASB) Lecture Note 4. ICRAF, Bogor, Indonesia

  • Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  • Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992) Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J 56:1799–1806

    Article  Google Scholar 

  • Jourdan C, Rey H (1997) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48

    Article  CAS  Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1–30

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Law MC, Balasundram SK, Ahmed OH, Harun MH (2009) Spatial variability of soil organic carbon in oil palm. Int J Soil Sci 4:93–103

    Article  CAS  Google Scholar 

  • Moreira A, Fageria NK (2009) Yield, uptake, and retranslocation of nutrients in banana plants cultivated in upland soil of Central Amazonian. J Plant Nutr 32:443–457. doi:10.1080/01904160802660750

    Article  CAS  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Neumann-Cosel L, Zimmermann B, Hall JS, van Breugel M, Elsenbeer H (2011) Soil carbon dynamics under young tropical secondary forests on former pastures—a case study from Panama. For Ecol Manag 261(10):1625–1633. doi:10.1016/j.foreco.2010.07.023

    Article  Google Scholar 

  • Palm CA, Woomer PL, Alegre J, Arevalo L, Castilla C, Cordeiro DG, Feigl B, Hairiah K, Kotto-Same J, Mendes A, Moukam A, Murdiyarso D, Njomgang R, Parton WJ, Ricse A, Rodrigues V, Sitompul SM, van Noordwijk M (2000) Carbon sequestration and trace gas emissions in slash-and-burn and alternative land uses in the humid tropics. Alternatives to Slash-and-Burn Programme, Nairobi

  • Reichert JM, Reinert DJ, Brada JA (2003) Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ci Ambiente 27:29–48

    Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York

    Google Scholar 

  • Silva M Jr, Desjardins T, Sarrazin M, Melo V, Martins P, Santos ER, Carvalho C (2009) Carbon content in Amazonian Oxisols after forest conversion to pasture. Rev Bras Cienc Solo 33:1603–1611

    Article  Google Scholar 

  • Sisti CPJ, Santos H, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res 76:39–58

    Article  Google Scholar 

  • Smith NJH, Fik TJ, PdT A, Falesi IC, Serrão EAS (1995) Agroforestry developments and potential in the Brazilian Amazon. Land Degrad Dev 6(4):251–263. doi:10.1002/ldr.3400060406

    Article  Google Scholar 

  • Sommer R, Vlek PLG, Sá T, Vielhauer K, Coelho R, Fölster H (2004) Nutrient balance of shifting cultivation by burning or mulching in the Eastern Amazon—evidence for subsoil nutrient accumulation. Nutr Cycl Agroecosyst 68:257–271

    Article  CAS  Google Scholar 

  • Tully KL, Lawrence D, Wood SA (2013) Organically managed coffee agroforests have larger soil phosphorus but smaller soil nitrogen pools than conventionally managed agroforests. Biogeochemistry 115:385–397. doi:10.1007/s10533-013-9842-4

    Article  CAS  Google Scholar 

  • Udotek IA (2012) Characterization of ash made from oil palm empty fruit bunches. Int J Environ Sci 3:518–524

    Google Scholar 

  • United States Department of Agriculture—USDA (2012) Production, supply and distribution. http://www.fas.usda.gov/psdonline/psdQuery.aspx. Accessed 2 Mar 2012

  • Vlek PLG, Kühne RF, Denich M (1997) Nutrient resources for crop production in the tropics. Phil Trans R Soc Lond B 352:975–985

    Article  Google Scholar 

  • Yui S, Yeh S (2013) Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands. Environ Res Lett 8:1–9

    Article  Google Scholar 

  • Zarin DJ, Davidson EA, Brondizio E, Vieira ICG, Sá T, Feldpausch T, Schuur EAG, Mesquita R, Moran E, Delamonica P, Ducey MJ, Hurtt GC, Salimon C, Denich M (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers Ecol Environ 3(7):365–369

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Mr. Ernesto Suzuki for granting permission to use the experimental area. This project was funded by Natura Inovacao e Tecnologia de Produtos Ltda., Cooperativa Mista de Tome-Açu(CAMTA), Ministerio da Ciencia e Tecnologia (MCT), and the Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA). We wish to thank the team of the Laboratorio de Ecofisiologia Vegetal of Embrapa Amazonia Oriental. We also thank two anonymous reviewers for their insightful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steel Silva Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, W.R., Vasconcelos, S.S., Kato, O.R. et al. Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon. Agroforest Syst 88, 357–368 (2014). https://doi.org/10.1007/s10457-014-9689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-014-9689-2

Keywords

Navigation