Annals of Global Analysis and Geometry

, Volume 29, Issue 3, pp 221-240

First online:

Complete and Stable O(p+1)×O(q+1)-Invariant Hypersurfaces with Zero Scalar Curvature in Euclidean Space ℝ p+q+2

  • Jocelino SatoAffiliated withFaculdade de Matemática, Universidade Federal de Uberlândia Email author 
  • , Vicente Francisco De Souza NetoAffiliated withDepartamento de Matemática, Universidade Católica de Pernambuco

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We classify the zero scalar curvature O(p+1)×O(q+1)-invariant hypersurfaces in the euclidean space ℝ p+q+2, p,q > 1, analyzing whether they are embedded and stable. The Morse index of the complete hypersurfaces show the existence of embedded, complete and globally stable zero scalar curvature O(p+1)×O(q+1)-invariant hypersurfaces in ℝ p+q+2, p+q≥ 7, which are not homeomorphic to ℝ p+q+1. Such stable examples provide counter-examples to a Bernstein-type conjecture in the stable class, for immersions with zero scalar curvature.


equivariant geometry scalar curvature stability Bernstein's conjecture