Annals of Global Analysis and Geometry

, Volume 29, Issue 3, pp 221–240

Complete and Stable O(p+1)×O(q+1)-Invariant Hypersurfaces with Zero Scalar Curvature in Euclidean Space ℝ p+q+2

Authors

    • Faculdade de MatemáticaUniversidade Federal de Uberlândia
  • Vicente Francisco De Souza Neto
    • Departamento de MatemáticaUniversidade Católica de Pernambuco
Article

DOI: 10.1007/s10455-005-9006-4

Cite this article as:
Sato, J. & Neto, V.F.D.S. Ann Glob Anal Geom (2006) 29: 221. doi:10.1007/s10455-005-9006-4

Abstract

We classify the zero scalar curvature O(p+1)×O(q+1)-invariant hypersurfaces in the euclidean space ℝ p+q+2, p,q > 1, analyzing whether they are embedded and stable. The Morse index of the complete hypersurfaces show the existence of embedded, complete and globally stable zero scalar curvature O(p+1)×O(q+1)-invariant hypersurfaces in ℝ p+q+2, p+q≥ 7, which are not homeomorphic to ℝ p+q+1. Such stable examples provide counter-examples to a Bernstein-type conjecture in the stable class, for immersions with zero scalar curvature.

Keywords

equivariant geometry scalar curvature stability Bernstein's conjecture

Copyright information

© Springer Science+Business Media, Inc. 2006