Skip to main content
Log in

Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study tested field and laboratory methods for the collection of cyanobacteria and microcystins emitted from lake water. These methods feature a highly portable, on-lake system for collecting aerosols directly from the lake, as well as a laboratory system for measurement of aerosols from freshly collected water samples under controlled conditions. Membrane air filters (0.45 μm) collected small particles such as picoplankton (0.2–2.0 μm) from aerosolized lake water. Picocyanobacteria were distinguished from other photosynthetic cells with epifluorescence microscopy using excitation filters for chlorophyll a (435 nm) and for phycobilin pigments (572 nm), characteristic of cyanobacteria. Aerosolization of picocyanobacteria ranged from 8872 to 167,297 cells m3 in the field and 23,764 to 365,011 cells m3 in the laboratory. Microcystin levels from field air filters ranged (below detectable limits) <13–384 pg MC m3 of air. The described methods could be used for monitoring aerosolized cyanobacteria for public health purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, R. J., Luu, H. A., Chen, D. Z. X., & Holmes, C. F. (1993). Chemical and biological evidence links microcystins to Salmon “Netpen Liver Disease”. Toxicon, 31, 1315–1323.

    Article  Google Scholar 

  • Annadotter, H., Cronberg, G., Nystrand, R., & Rylander, R. (2005). Endotoxins from cyanobacteria and gram-negative bacteria as the cause of an acute influenza-like reaction after inhalation of aerosols. EcoHealth, 2, 209–221.

    Article  Google Scholar 

  • Backer, L., Carmichael, W., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., et al. (2008). Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Marine Drugs, 6(2), 389–406.

    Article  CAS  Google Scholar 

  • Backer, L., McNeel, S., Barber, T., Kirkpatrick, B., Williams, C., Irvin, M., et al. (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55, 909–921.

    Article  CAS  Google Scholar 

  • Banack, S. A., Caller, T., Henegan, P., Haney, J., Murby, A., Metcalf, J. S., et al. (2015). Detection of cyanotoxins, β-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins, 7, 322–336.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Moberg Parker, J. P., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacteria populations. Proceedings of the National Academy of Science, 104, 299–304.

    Article  CAS  Google Scholar 

  • Brown, R. M, Jr, Larson, D. H., & Bold, H. C. (1964). Airborne algae: Their abundance and heterogeneity. Science, 143, 583–585.

    Article  Google Scholar 

  • Burns, C. W., & Stockner, J. G. (1991). Picoplankton in six New Zealand lakes: Abundance in relation to season and trophic state. International Review of Hydrobiology, 76, 523–536.

    Article  Google Scholar 

  • Caller, T., Doolin, J., Haney, J., Murby, A., West, K., Farrar, H., et al. (2009). A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotrophic Lateral Sclerosis, 10(sup2), 101–108.

    Article  CAS  Google Scholar 

  • Callieri, C. (2008). Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshwater Reviews, 1, 1–28.

    Article  Google Scholar 

  • Callieri, C. (2010). Single cells and microcolonies of freshwater picocyanobacteria: A common ecology. Journal of Limnology, 69(2), 257–277.

    Article  Google Scholar 

  • Callieri, C., & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: A review. Journal of Limnology, 61, 1–14.

    Article  Google Scholar 

  • Carmichael, W.W. (1992). Status report on planktonic cyanobacteria (Blue-green algae) and their toxins. In Technical Report Environmental Protection Agency, No. 600/R-92/079. U.S. EPA, Cincinnati, OH.

  • Cheng, Y. S., Yue Zhou, C., Irvin, M., Kirkpatrick, B., & Backer, L. C. (2007). Characterization of aerosols containing microcystin. Marine Drugs, 5(4), 136–150.

    Article  CAS  Google Scholar 

  • Chorus, I. (Ed.). (2001). Cyanotoxins: Occurrence, causes, consequences (p. 357). Berlin: Springer.

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water. In I. Chorus & J. Bartram (Eds.), World Health Organization (p. 416). Routledge: E & FN Spon.

    Google Scholar 

  • Chrisostomou, A., Moustaka-Gouni, M., Sgardelis, S., & Lanaras, T. (2009). Air-dispersed phytoplankton in a Mediterranean river reservoir system (Aliakmon-Polyphytos, Greece). Journal of Plankton Research, 31, 877–884.

    Article  CAS  Google Scholar 

  • Crush, J., Briggs, L., Sprosen, J., & Nichols, S. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape and lettuce. Journal of Environmental Toxicology, 23, 246–252.

    Article  CAS  Google Scholar 

  • Darwin, C. R. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society of London, 2, 26–30.

    Article  Google Scholar 

  • Despres, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Poeschl, U. (2007). Characterization of primary biogenic aerosol particles in urban, rural and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4, 1127–1141.

    Article  CAS  Google Scholar 

  • Domingos, P., Rubim, T., Molica, R., Azevedo, S., & Carmichael, W. (1999). First report of microcystin production by picoplanktonic cyanobacteria isolated from a Northeast Brazilian drinking water supply. Journal of Environmental Toxicology, 14, 31–35.

    Article  CAS  Google Scholar 

  • Dueker, M. E., O’Mullan, G. D., Juhl, A. R., Weathers, K. C., & Uriarte, M. (2012). Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site. Environmental Science and Technology, 46, 10926–10933.

    Article  CAS  Google Scholar 

  • Dunlop, R. A., Cox, P. A., Banack, S. A., & Rodgers, K. J. (2013). The non-protein amino acid BMAA is misincorporated into human proteins in place of l-Serine causing protein misfolding and aggregation. PLoS One, 8(9), 1–8.

    Article  Google Scholar 

  • Edwards, C., & Lawton, L. (2010). Assessment of microcystin purity using charged aerosol detection. Journal of Chromatography A, 1217, 5233–5238.

    Article  CAS  Google Scholar 

  • Falconer, I. R., & Humpage, A. R. (1996). Tumor promotion by cyanobacterial toxins. Phycologia, 35, 74–79.

    Article  Google Scholar 

  • Fleming, L., Backer, L., & Baden, D. (2005). Overview of aerosolized Florida red tide toxins: Exposures and effects. Environmental Health Perspectives, 113, 618–620.

    Article  CAS  Google Scholar 

  • Gaete, V. E., Canelo, N., Lagos, N., & Zambrano, F. (1994). Inhibitory effects of Microcystis aeruginosa toxin on the ion pumps of the gills of freshwater fish. Toxicon, 32(1), 121–127.

    Article  CAS  Google Scholar 

  • Galey, F. D., Beasley, V. R., Carmichael, W. W., Kleppe, G., Hooser, S. B., & Haschek, W. M. (1987). Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows. American Journal of Veterinary Research, 48, 1415–1420.

    CAS  Google Scholar 

  • Gambaro, A., Barbaro, E., Zangrando, R., & Barbante, C. (2012). Simultaneous quantification of microcystins and nodularin in aerosol samples using high-performance liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 26, 1497–1506.

    Article  CAS  Google Scholar 

  • Genitsaris, S., Kormas, K. A., & Moustaka-Gouni, M. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.

    Google Scholar 

  • Gregory, P. H., Hamilton, E. D., & Sreeramulu, T. (1955). Occurrence of the alga gloeocapsa in the air. Nature, 176(4496), 1270.

    Article  Google Scholar 

  • Haney, J.F. & Ikawa, M. (2000). A survey of 50 NH lakes for microcystins (MCs). In Final Report. U.S. Geological Survey, Reston, VA. University of New Hampshire, Durham, NH.

  • Hathaway, R.A. (2001). Bioaccumulation of microcystin in crayfish and mussels within New Hampshire lakes and their potential as biomonitors. Masters Thesis. University of New Hampshire, Durham, NH.

  • Hudnell, H.K. (2008). In Proceedings of the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): State-of-The-Science and Research Needs, Advances in Experimental Medicine and Biology. Springer Press.

  • Ibelings, B., Bruning, K., deJonge, J., Wolfstein, K., Dionisio, L., Postma, P., & Burger, T. (2005). Distribution of microcystins in a lake foodweb: No evidence for biomagnifications. Microbial Ecology, 49, 487–500.

    Article  CAS  Google Scholar 

  • Jochimsen, E. M., Carmichael, W. W., An, J., Cardo, D. M., Cookson, S. T., Holmes, C. E. M., et al. (1998). Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine, 38, 873–878.

    Article  Google Scholar 

  • Lampert, W. (1978). Release of dissolved organic carbon by grazing zooplankton. Limnology and Oceanography, 23(4), 831–834.

    Article  CAS  Google Scholar 

  • Levesque, B., Gervais, M. C., Chevalier, P., Gauvin, D., Anassour-Laouan-Sidi, E., Gingras, S., et al. (2013). Prospective study of acute health effects in relation to exposure to cyanobacteria. Science of the Total Environment, 466, 397–403.

    Google Scholar 

  • Li, A., Tian, Z., Li, J., Yu, R., Banack, S., & Wang, Z. (2010). Detection of the neurotoxin BMAA with cyanobacteria isolated from freshwater in China. Toxicon, 55, 947–953.

    Article  CAS  Google Scholar 

  • Luty, E. T., & Hoshaw, R. W. (1967). Airborne algae of the Tucson and Santa Catalina Mountain areas. Journal of the Arizona Academy of Science, 4, 179–182.

    Article  Google Scholar 

  • Melia, M. B. (1984). The distribution and relationship between palynomorphs in aerosols and deep-sea sediments off the coast of Northwest Africa. Marine Geology, 58(3–4), 345–371.

    Article  Google Scholar 

  • Mitrovic, M., Allis, O., Furey, A., & James, K. J. (2005). Bioaccumulation and harmful effects of microcystins-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and Environmental Safety, 61, 345–352.

    Article  CAS  Google Scholar 

  • Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., et al. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 17–25.

    Article  CAS  Google Scholar 

  • Murby, A. (2009). Spatial distributions of cyanobacteria and microcystins in New Hampshire lakes of varying trophic conditions. Masters Thesis. University of New Hampshire, Durham, NH.

  • Polymenakou, P., Mandalakis, M., Stephanou, E., & Tselephides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Article  Google Scholar 

  • Sahu, N., & Tangutur, A. D. (2014). Airborne algae: Overview of the current status and its implications on the environment. Aerobiologia, doi:10.1007/s10453-014-9349-z.

    Google Scholar 

  • Schlichting, H. E, Jr. (1969). The importance of airborne algae and protozoa. Journal of the Air Pollution Control Association, 19, 946–951.

    Article  Google Scholar 

  • Schlichting, H. E, Jr. (1974). Periodicity and seasonality of airborne algae and protozoa. In H. Leith (Ed.), Phenology and seasonality modeling (pp. 407–413). Berlin: Springer.

    Chapter  Google Scholar 

  • Schlichting Jr., H.E., Brown Jr., R.M. & Smith, P.E. (1973). Airborne algae of Hawaii: A model for coordinated aerobiological research. In W. S. Benninghoff & R. L. Edmonds (Eds.). In Proceeding Workshop/Conference I. Ecological Systems Approaches to Aerobiology. II. Development, Demonstration, and Evaluation of Models. US IBP Handbook, vol. 3, (pp. 150–155).

  • Sharmaa, N. K., & Rai, A. K. (2008). Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicology and Environmental Safety, 69, 158–162.

    Article  Google Scholar 

  • Smith, J. L., & Haney, J. F. (2006). Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon, 48(5), 580–589.

    Article  CAS  Google Scholar 

  • Stommel, E. W., Field, N. C., & Caller, T. A. (2012). Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Medical Hypotheses, 80, 142–145.

    Article  Google Scholar 

  • Trubetskova, I. L., & Haney, J. F. (2006). Effects of differing concentrations of microcystin-producing Microcystis aeruginosa on growth, reproduction, survivorship and offspring of Daphnia magna. Archive Hydrobiologia, 167, 533–546.

    Article  CAS  Google Scholar 

  • Wood, S. A., & Dietrich, D. R. (2011). Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Journal of Environmental Monitoring, 13, 1617–1624.

    Article  CAS  Google Scholar 

  • Zimba, P. V., Koo, L., Gaunt, P. S., Brittain, S., & Carmichael, W. W. (2001). Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. Journal of Fish Diseases, 24, 41–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to Alisha Stommel, Elijah Stommel, and Sarah Stowell for their time in the field with the aerosol collections. Additional thanks to Kate Langley for her continued effort with these methods. Partial funding was provided by the New Hampshire Agricultural Experimental Station. The Scientific Contribution Number is 2634. This work was supported by the USDA National Institute of Food and Agriculture Hatch 569 Project, Accession 211727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Murby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murby, A.L., Haney, J.F. Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia 32, 395–403 (2016). https://doi.org/10.1007/s10453-015-9409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9409-z

Keywords

Navigation