Skip to main content
Log in

Temporal evolution and vertical stratification of Microcystis toxic potential during a first bloom event

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In order to study the setup of a Microcystis bloom and the evolution of its toxic potential, we studied the temporal and vertical variations in Microcystis aeruginosa abundance, microcystins (MC) concentrations (intracellular and extracellular), and the relative proportion of potentially microcystin-producing cells (MC-producing cells) in relation to physicochemical parameters in the recently setup Moroccan reservoir “Yaacoub Al Mansour.” The Microcystis bloom appeared relatively late in the season and was associated with a low proportion of MC-producing cells in the water surface layer, probably related to non-limiting nutrient concentrations. Interestingly, the setup of the bloom leads to a vertical gradient, showing a decrease in Microcystis cell abundance inversely coupled with an increase in the proportion of MC-producing cells. Thus, this can be the result of the growth where non-MC-producing cells remain in the lighted water layer easier than MC-producing ones. Nevertheless, parameters other than light intensity may influence the toxic potential of bloom as no vertical pattern was observed concerning microcystins cellular quotas. The high microcystins concentrations measured in the deep water layer have also proved the importance of considering the deep part of aquatic ecosystem in the management of health risks associated with cyanobacterial proliferations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bozarth CS, Schwartz AD, Shepardson JW et al (2010) Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Appl Environ Microbiol 76:5207–5213. doi:10.1128/AEM.00001-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briand JF, Jacquet S, Bernard C, Humbert JF (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34:361–377. doi:10.1051/vetres:2003019

    Article  CAS  PubMed  Google Scholar 

  • Briand E, Gugger M, François JC et al (2008) Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population. Appl Environ Microbiol 74:3839–3848. doi:10.1128/AEM.02343-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briand E, Escoffier N, Straub C et al (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. Int Soc Microbial Ecol J 3:419–429. doi:10.1038/ismej.2008.121

    CAS  Google Scholar 

  • Carmichael WW (1988) Toxins of freshwater algae. In: A TU (ed) Marine toxins and venoms, Handbook of natural toxins. Marcel Dekker, Inc. New York, pp 121–147. ISBN: 0-8247-7667-4.XVIII

  • Carmichael WW (1997) The Cyanotoxins. In: Callow JA (ed) Advances in botanical research. Academic Press, London, pp 211–256

    Google Scholar 

  • Carmichael WW, Falconer IR (1993) Diseases related to freshwater blue-green algal toxins and control measures. In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press, London, pp 187–209. ISBN 0-12-247990-4

    Chapter  Google Scholar 

  • Chaponnière A (2005) Fonctionnement hydrologique d’un Bassin versant montagneux semi-aride: Cas du Bassin versant du Rehraya (Haut Atlas Marocain). Thèse de doctorat, Institut National Agronomique Paris-Grignon 345p. fdi:010047426

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272. doi:10.1016/j.taap.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and nontoxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725. doi:10.1016/j.hal.2009.02.004

    Article  CAS  Google Scholar 

  • Deblois CP, Juneau P (2010) Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae 9:18–24. doi:10.1016/j.hal.2009.07.001

    Article  CAS  Google Scholar 

  • Dittmann E, Neilan BA, Erhard M et al (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787. doi:10.1046/j.1365-2958.1997.6131982.x

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Fewer D, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43

    Article  CAS  PubMed  Google Scholar 

  • Downing TG, Meyer C, Gehringer MM et al (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262. doi:10.1002/tox.20106

    Article  CAS  PubMed  Google Scholar 

  • El Ghazali I, Saqrane S, Saker M et al (2011) Caractérisation biochimique et moléculaire d’efflorescences à cyanobactéries toxiques dans le réservoir Lalla Takerkoust (Maroc). J Water Sci 24:117–128. doi:10.7202/1006106ar

    Google Scholar 

  • Hesse K, Kohl JG (2001) Effects of light and nutrient supply on growth and microcystin content of different strains of Microcystis aeruginosa. In: Chorus I (ed) Cyanotoxins-occurrence. Causes and consequences. Springer, Berlin, pp 104–114

    Google Scholar 

  • Hesse K, Dittmann E, Börner T (2001) Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol Ecol 37:39–43. doi:10.1111/j.1574-6941.2001.tb00851.x

    Article  CAS  Google Scholar 

  • Hotto AM, Satchwell MF, Berry DL et al (2008) Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake. Harmful Algae 7:671–681. doi:10.1016/j.hal.2008.02.001

    Article  CAS  Google Scholar 

  • Humbert JF, Le Berre B (2001) Genetic diversity in two species of freshwater cyanobacteria, Planktothrix (Oscillatoria) rubescens and Planktothrix agardhii. Archiv für Hydrobiol 150:197–206

    CAS  Google Scholar 

  • Ihle T, Jähnichen S, Benndorf J (2005) Wax and wane of Microcystis (Cyanophyceae) and microcystins in lake sediments: a case study in Quitzdorf Reservoir (Germany). J Phycol 41:479–488. doi:10.1111/j.1529-8817.2005.00071.x

    Article  Google Scholar 

  • Jang MH, Ha K, Joo GJ, Takamura N (2003) Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshw Biol 48:1540–1550. doi:10.1046/j.1365-2427.2003.01107.x

    Article  Google Scholar 

  • Jang MH, Jung JM, Takamura N (2007) Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol Oceanogr 52:1454–146. ISSN: 0024-3590

    Google Scholar 

  • Kaebernick M, Rohrlack T, Christoffersen K, Neilan BA (2002) A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Environ Microbiol 3:669–679. doi:10.1046/j.1462-2920.2001.00241.x

    Article  Google Scholar 

  • Kardinaal WEA, Tonk L, Janse I et al (2007) Competition for light between toxic and non-toxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 73:2939–2946. doi:10.1128/AEM.02892-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurmayer R, Kutzenberger T (2003) Application of Real-Time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:16723–16730. doi:10.1128/AEM.69.11.6723-6730.2003

    Google Scholar 

  • Latour D, Sabido O, Salencon MJ, Giraudet H (2004) Dynamics and metabolic activity of the benthic cyanobacterium Microcystis aeruginosa in the Grangent reservoir (France). J Plankton Res 26:1–8

    Article  CAS  Google Scholar 

  • Latour D, Salençon MJ, Reyss JL, Giraudet H (2007) Sedimentary imprint of Microcystis aeruginosa (cyanobacteria) blooms in Grangent reservoir (Loire, France). J Phycol 43:417–425. doi:10.1111/j.1529-8817.2007.00343.x

    Article  Google Scholar 

  • Misson B, Sabart M, Amblard C et al (2011) Involvement of microcystins and colony size in the benthic recruitment of the Cyanobacterium Microcystis (Cyanophyceae). J Phycol 47:42–51. doi:10.1111/j.1529-8817.2010.00943.x

    Article  Google Scholar 

  • Oh HM, Lee SJ, Jang MH, Yoon BD (2000) Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl Environ Microbiol 66:176–179. doi:10.1128/AEM.66.1.176-179.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phelan RR, Downing TG (2011) A growth advantage for microcystin production by Microcystis PCC7806 under high light. J Phycol 47:1241–1246. doi:10.1111/j.1529-8817.2011.01056.x

    Article  CAS  Google Scholar 

  • Pobel D, Godon JJ, Humbert JF et al (2012) High-frequency monitoring of the genetic diversity and the potential toxicity of a Microcystis aeruginosa bloom in a French shallow lake. FEMS Microbiol Ecol 79:132–141. doi:10.1111/j.1574-6941.2011.01203.x

    Article  CAS  PubMed  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains—a laboratory study. J Appl Phycol 5:581–591. doi:10.1007/BF02184637

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sabart M, Pobel D, Latour D, Robin J, Salençon MJ, Humbert JF (2009) Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. Environ Microbiol Rep 1:263–272

    Article  CAS  PubMed  Google Scholar 

  • Sabart M, Pobel D, Briand E et al (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759. doi:10.1128/AEM.02531-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schatz D, Keren Y, Vardi A et al (2007) Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9:965–970. doi:10.1111/j.1462-2920.2006.01218.x

    Article  CAS  PubMed  Google Scholar 

  • Skulberg OM, Carmichael WW, Codd GA et al (1993) Taxonomy of toxic Cyanophyceae (cyanobacteria). In: Falconer IR (ed) Algal toxins in seafood and drinking water. Academic Press, London, pp 145–164

    Chapter  Google Scholar 

  • Tillett D, Dittmann E, Erhard M et al (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7:753–764. doi:10.1016/S1074-5521(00)00021-1

    Article  CAS  PubMed  Google Scholar 

  • Van de Waal DB, Verspagen JMH, Finke JF et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450. doi:10.1038/ismej.2011.28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiedner C, Visser PM, Fastner J et al (2003) Effects of Light on the microcystin content of Microcystis Strain PCC 7806. Appl Environ Microbiol 69:1475–1481. doi:10.1128/AEM.69.3.1475-1481.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida M, Yoshida T, Takashima Y et al (2007) Dynamics of microcystin producing and non microcystin producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol Lett 266:49–53. doi:10.1111/j.1574-6968.2006.00496.x

    Article  CAS  PubMed  Google Scholar 

  • Zilliges Y, Kehr JC, Meissner S et al (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6:e17615. doi:10.1371/journal.pone.0017615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by French-Moroccan committee of Volubilis program no: MA/10/239. The toxic potential analysis (microcystins analysis and proportion of MC-producing cells) was carried out in the Laboratoire of Microorganismes: Génome et Environment at the Université Blaise Pascal, Clermont Ferrand. We thank Laura Sheehy for improving the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Latour.

Additional information

Handling Editor: Bas W. Ibelings

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait Hammou, H., Latour, D., Sabart, M. et al. Temporal evolution and vertical stratification of Microcystis toxic potential during a first bloom event. Aquat Ecol 48, 219–228 (2014). https://doi.org/10.1007/s10452-014-9477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-014-9477-0

Keywords

Navigation