, Volume 47, Issue 2, pp 235-244
Date: 26 Apr 2013

Current velocity influences the facilitation and removal of algae by stream grazers

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The modification of flows in lotic ecosystems can have dramatic effects on abiotic and biotic processes and change the structure of basal trophic levels. In high-gradient streams, most of the biota are benthic, and decreased flow may homogenize and reduce benthic current velocity, potentially changing stream ecosystem function. Grazing by macroinvertebrates is an important component of stream function because grazers regulate energy flow from primary producers to higher trophic levels. We conducted an experiment to examine how macroinvertebrate grazers facilitated or removed algal biomass across a gradient of benthic current velocity (0–40 cm s−1). We chose three grazers (Drunella coloradensis, Cinygmula spp., and Epeorus deceptivus) from a montane stream and conducted our experiment using 24 artificial stream channels that had three treatments: no grazers (control), single-grazer, and combined-grazer treatments. In the absence of grazers, algal biomass increased with benthic current velocity. Grazer treatments differed from the control in that more algal biomass was removed at higher velocities, whereas algal accrual was largely facilitated at low velocities. The transition from facilitation to removal ranged from 4.5 to 5.9 cm s−1 for individual grazer treatments and occurred at 11.7 cm s−1 for the combined-grazer treatment. Our data suggest that velocity plays a significant role in the facilitation and removal of algae by macroinvertebrate grazers. Additionally, the patterns revealed here could have general implications for algal accrual in systems where flow is reduced.

Handling Editor: Michael T. Monaghan.