Skip to main content

Advertisement

Log in

Habitat variation at different scales and biotic linkages in lotic systems: consequences for monitorization

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The Water Framework Directive (WFD) requires the hydromorphological assessment of water bodies, thereby acknowledging the importance of these features in supporting biological quality elements and providing a more complete ecological characterization of surface water bodies. Using a dataset covering mainland Portugal (about 300 sites spread along the different river types) and based on the River Habitat Survey (RHS) field methodology, our aim was to test the spatial variation and the relative role of an array of multi-scale habitat descriptors, in order to: (a) to analyse their geographical variation; (b) to identify the principal variables that express human disturbance; and (c) to assess how three different aquatic communities (invertebrates, fish, and macrophytes) were related to those environmental descriptors. We found that hydromorphological variables described by RHS varied significantly over large geographical scales and were more strongly associated with the principal catchments rather than river type (derived from climatic, geological, and typological factors). RHS-derived descriptors were of greater importance in assessing disturbance and were closely related to land use and vegetation on the banks and along the river corridor, despite the considerable geographical variation. Habitat variables were more clearly associated with macrophytes and fish than with the benthic macroinvertebrates, a facet of sampling design, since the scale of biological survey for the former two biological groups approaches the scale used to characterize the surrounding environment. An array of environmental variables, ranging from instream features to bankside and river corridor land use features, was associated with each community, making it difficult to discern any common underlying pattern. Based upon our findings, we propose that hydraulic variables should be included in hydromorphological assessment to improve both the performance of physical indicators and the correspondence with the demands of the WFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amoros C (2001) The concept of habitat diversity between and within ecosystems applied to river side-arm restoration. Environ Manag 28(6):805–817. doi:10.1007/s002670010263

    Article  CAS  Google Scholar 

  • Anderson MJ, Gorley RN (2007) Experimental design and analysis of multivariate ecological data. Lecture notes. PRIMER-E Ltd, UK. Univ Evora Portugal 17–21(September)

  • Armitage PD, Pardo I (1995) Impact assessment of regulation at the reach level using macroinvertebrate information from mesohabitats. Regul Rivers Res Manag 10:147–158. doi:10.1002/rrr.3450100210

    Article  Google Scholar 

  • Bovee KD (1982) A guide of stream habitat analysis using the instream flow incremental methodology. U.S. Fish and Wildlife Service FWS/OBS 82/26, pp 248

  • Brierley GJ, Fryirs K (2000) River styles in Bega Catchment, NSW, Australia: implications for river rehabilitation. Environ Manag 25(6):661–679. doi:10.1007/s002670010052

    Article  Google Scholar 

  • Collier KJ (2008) Temporal patterns in the stability, persistence and condition of stream macroinvertebrate communities: relationships with catchment land-use and regional climate. Freshw Biol 53:603–616. doi:10.1111/j.1365-2427.2007.01923.x

    Article  Google Scholar 

  • Cortes RMV, Oliveira SV, Hughes SJ, Ferreira MT (2008) Combining habitat and biological characterization: ecological validation of the River Habitat Survey. Limnetica 27(1):39–56

    Google Scholar 

  • Dodkins I, Rippey B, Harrington TJ, Bradley C, Chatain BN, Kelly-Quinn M, McGarrigle M, Hodge S, Dolédec S, Lamouroux N, Fuchs U, Mérigoux S (2007) Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshw Biol 52:145–164. doi:10.1111/j.1365-2427.2006.01663.x

    Article  Google Scholar 

  • FAME Consortium (2004) Manual for the application of the European fish index—EFI. A fish-based method to assess the ecological status of European rivers in support of the Water Framework Directive. Version 1.1. http://fame.boku.ac.at. Accessed 25 Apr 2004

  • Flather CH, Wilson KR, Dean JD, McComb WC (1997) Identifying gaps in conservation networks: of indicators and uncertainty in geographic-based analysis. Ecol Appl 7:531–542. doi:10.1890/1051-0761(1997)007[0531:IGICNO]2.0.CO;2

    Article  Google Scholar 

  • Frappier E (2007) A new index of habitat alteration and a comparison of approaches to predict stream habitat conditions. Freshw Biol 52:2009–2020. doi:10.1111/j.1365-2427.2007.01803.x

    Article  Google Scholar 

  • Frissel CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification. Environ Manag 10:199–214. doi:10.1007/BF01867358

    Article  Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to riverine systems. Aquat Sci 64:118–128. doi:10.1007/s00027-002-8060-2

    Article  CAS  Google Scholar 

  • Heino J, Muotka T, Paavola R, Hamalainen H, Kpskenniemi E (2002) Correspondence between regional delineations and spatial patterns in macroinvertebrate assemblages of boareal headwater streams. J N Am Benthol Soc 21:397–413. doi:10.2307/1468478

    Article  Google Scholar 

  • Heino J, Muotka T, Paavola R (2003) Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J Anim Ecol 72:425–434. doi:10.1046/j.1365-2656.2003.00711.x

    Article  Google Scholar 

  • Heino J, Paavola R, Virtainen R, Muotka T (2005) Searching for diversity indicators in running waters: do bryophytes, macroinvertebrates and fish show congruent diversity patterns? Biodivers Conserv 14:415–428

    Article  Google Scholar 

  • Hughes SJ, Ferreira MT, Cortes RMV (2008) Hierarchical spatial patterns and drivers of change in benthic macroinvertebrate communities in an intermittent Mediterranean river. Aquat Conserv: Mar Freshw Ecosyst 18:742–760. doi:10.1002/aqc.866

    Article  Google Scholar 

  • INAG (2008) Characterization of river types in Portugal according to the implementation of the Water Framework Directive (in Portuguese). Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional, Lisboa, p 31

    Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities—the roles of biotic, abiotic and spatial factors. Can J Fish Aquat Sci 58:157–170. doi:10.1139/cjfas-58-1-157

    Article  Google Scholar 

  • Jaworski A (1993) The application of the ecotone concept in defining nutrient management requirements for the upper Potomac River basin. Hydrobiologia 251:341–349. doi:10.1007/BF00007193

    Article  CAS  Google Scholar 

  • Johnson RK (1999) Regional representativeness of Swedish reference lakes. Environ Manag 23:113–124. doi:10.1007/s002679900172

    Article  Google Scholar 

  • Kellerhals R, Church M (1989) The morphology of large rivers: characterization and management In: Dodge DP (ed) Proceedings of the international Large River symposium, Publications of Fisheries and Aquatic Science, Ottawa, pp 31–49

  • Lamouroux N (1998) Depth probability distributions in stream reaches. J Hydraul Eng 124:224–228. doi:10.1061/(ASCE)0733-9429(1998)124:2(224)

    Article  Google Scholar 

  • Lamouroux N, Oliviers JM, Persat H, Pouilly M, Sochon Y, Statzner B (1999) Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. Freshw Biol 42:275–299. doi:10.1046/j.1365-2427.1999.444498.x

    Article  Google Scholar 

  • Logan P, Furse M (2002) Preparing for the European Water Framework Directive—making the links between habitat and aquatic biota. Aquat Conserv: Mar Freshw Ecosyst 12:425–437. doi:10.1002/aqc.535

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MJM Software Design, Oregon, p 302

    Google Scholar 

  • Mérigoux S, Dolédec S (2004) Hydraulic requirements of stream communities: a case study on invertebrates. Freshw Biol 49:600–613. doi:10.1111/j.1365-2427.2004.01214.x

    Article  Google Scholar 

  • Mesquita N, Coelho MM, Filomena MM (2006) Spatial variation in fish assemblages across small Mediterranean drainages: effects of habitat and landscape context. Environ Biol Fish 77:105–120. doi:10.1007/s10641-006-9058-8

    Article  Google Scholar 

  • Mobes-Hansen B, Waringer JA (1998) The influence of hydraulic stress on microdistribution patterns of zoobenthos in a sandstone brook. Int Rev Hydrobiol 83:381–396. doi:10.1002/iroh.19980830506

    Article  Google Scholar 

  • Naiman RJ (ed) (1992) Watershed management: balancing sustainability and environmental change. Springer-Verlag, New York

    Google Scholar 

  • Newson MD, Harper DM, Padmore CL, Kemp JL, Vogel B (1998) A cost-effective approach for linking habitats, flow types and species requirements. Aquat Conserv: Mar Freshw Ecosyst 8:431–446. doi:10.1002/(SICI)1099-0755(199807/08)8:4<431::AID-AQC302>3.0.CO;2-W

    Article  Google Scholar 

  • Oberdoff T, Hugueny B, Compin A, Belkessam D (1998) Non-interactive fish communities in the coastal streams of north-western France. J Anim Ecol 67:472–484. doi:10.1046/j.1365-2656.1998.00211.x

    Article  Google Scholar 

  • Oliveira SV, Cortes RMV (2005) A biologically relevant habitat condition index for streams in northern Portugal. Aquat Conserv: Mar Freshw Ecosyst 15:189–210. doi:10.1002/aqc.671

    Article  Google Scholar 

  • Palmer MA, Hakenkamp CC, Nelson-Baker K (1997) Ecological heterogeneity in streams: why variance matters. J N Am Benthol Soc 161:189–202. doi:10.2307/1468251

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409. doi:10.2307/1468026

    Article  Google Scholar 

  • Raven PJ, Fox P, Everard M, Holmes NTH, Dawson FH (1997) River Habitat Survey: a new system for classifying rivers according to their habitat quality. In: Boo PJ, Howell DL (eds) Freshwater quality: defining the indefinable?. The Stationery Office, Edinburg, pp 215–234

    Google Scholar 

  • Raven PJ, Holmes NTH, Dawson FH, Fox PJA, Everard M, Fozzard IR, Rouen KJ (1998) River habitat quality: the physical character of rivers and streams in the UK and the Isle of Man. River Habitat Survey report no. 2, Environment Agency, Bristol

  • REFCOND (2003) Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. CIS Working Group 2.3. Final Version 7.0

  • Roth NE, Allan JD, Erickson DL (1996) Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecol 11:141–156. doi:10.1007/BF02447513

    Article  Google Scholar 

  • Sánchez-Montoya MDEL, Puntí T, Suárez ML, Vidal-Abarca MDEL, Rieradevall M, Poquet JM, Zamora-Muñoz C, Robles S, Álvarez M, Alba-Tercedor J, Toro M, Pujante AM, Munne A, Prat N (2007) Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshw Biol 52:2240–2255. doi:10.1111/j.1365-2427.2007.01826.x

    Article  Google Scholar 

  • Shurin JB, Havel JE, Leibold MA, Pinel-Alloul B (2000) Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81:3062–3073

    Google Scholar 

  • Simon A, Castro J (2003) Measurement and analysis of alluvial channel form. In: Kondolf GM, Piégay H (eds) Tools in fluvial geomorphology. Wiley, Chichester, pp 291–322

    Google Scholar 

  • Statsoft Inc. (2004) Statistica (DATA analysis software system). Version 7, Tulsa

  • Stevens RD, Wilig MR (2002) Geographical ecology at the community level: perspectives on the diversity of the new world bats. Ecology 83:545–560

    Article  Google Scholar 

  • Stewardson M (2005) Hydraulic geometry of stream reaches. J Hydrol (Amsterdam) 306:97–111. doi:10.1016/j.jhydrol.2004.09.004

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Tickner D, Aritage PD, Bickerton MA, Hall KA (2000) Assessing stream quality using information on mesohabitat distribution and character. Aquat Conserv: Mar Freshw Ecosyst 10:179–186. doi:10.1002/1099-0755(200005/06)10:3<179::AID-AQC403>3.0.CO;2-U

    Article  Google Scholar 

  • Tonn WM, Magnuson JJ, Rask M, Toivonen J (1990) Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am Nat 136:345–375. doi:10.1086/285102

    Article  Google Scholar 

  • Vondracek B, Blann KL, Cox CB, Nerbonne JL, Mumford KG, Nerbonne BA (2005) Land use, spatial scale and stream systems: lessons from an agricultural region. Environ Manag 36:775–791. doi:10.1007/s00267-005-0039-z

    Article  Google Scholar 

  • Wilhelm JGO, Wessel KJ, Merrit RW, Cummins KW (2005) Habitat assessment of non-wadeable rivers in Michigan. Environ Manag 36:592–609. doi:10.1007/s00267-004-0141-7

    Article  Google Scholar 

  • Wohl E, Merrit DM (2007) Reach-scale channel geometry of mountain streams. Geomorphology 93(3–4):168–185. doi:10.1016/j.geomorph.2007.02.014

    Google Scholar 

  • Zigler SJ, Newton TJ, Steuer JJ, Bartsch MR, Sauer JS (2008) Importance of physical and hydraulic characteristics to unionid mussels: a retrospective analysis in a reach of large river. Hydrobiologia 598:343–360. doi:10.1007/s10750-007-9167-1

    Article  Google Scholar 

Download references

Acknowledgment

This work was provided by the project PPCDT/AMB/56424/04 sponsored by Portugal Foundation for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Manuel Vitor Cortes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortes, R.M.V., Hughes, S.J., Varandas, S.G.P. et al. Habitat variation at different scales and biotic linkages in lotic systems: consequences for monitorization. Aquat Ecol 43, 1107–1120 (2009). https://doi.org/10.1007/s10452-009-9228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9228-9

Keywords

Navigation