Skip to main content
Log in

Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We used a Simrad EK60 echosounder equipped with two split-beam transducers to develop a sampling strategy for assessing fish resources in Tunisian man-made lakes. Day and night surveys, using vertical and horizontal beaming, were carried out between December 2006 and February 2007, a period when fish catchability is high. Four reservoirs with differing surface areas and bathymetries were selected. Echogram analysis revealed that fish communities were mainly composed of individual targets. A few schools were detected near the surface during daylight, but these schools dispersed slightly at night. In these multispecies reservoirs, considerable day and night differences in density existed, but with no clear trend. Target strength (TS) distribution mode values detected at night were always lower or equal to daytime values. Biomass estimates were significantly higher during daytime in three reservoirs, corresponding with higher TS modal values. In the other reservoir, the biomass estimate was significantly higher during nighttime corresponding with higher mean density during this period. Using only a vertically aimed transducer in our study reservoirs would have led to an underestimate of density and biomass by 5–100% and 20–100%, respectively, depending on the man-made lake. We conclude that acoustic sampling in our reservoirs must be done during day and night and that both vertical and horizontal beaming must be used to obtain the best possible picture of the fish stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aglen A (1983) Random errors of acoustic fish abundance estimates in relation to the survey grid density applied. FAO Fish Rep 300:293–298

    Google Scholar 

  • Anonymous (2006) Annuaires des statistiques des pêches de la Direction Générale de la Pêche et de l’Aquaculture de Tunisie

  • Appenzeller AR, Legget WC (1992) Bias in acoustic estimates of fish abundance due to acoustic shadowing: evidence from day-night survey of vertically migrating fish. Can J Fish Aquat Sci 49:2179–2189

    Article  Google Scholar 

  • Axenrot T, Didrikas T, Danielsson C, Hansson S (2004) Diel patterns in pelagic fish behavior and distribution observed from a stationary, lakebed-mounted, and upward-facing transducer. ICES J Mar Sci 61:1100–1104. doi:10.1016/j.icesjms.2004.07.006

    Article  Google Scholar 

  • Balk H (2001) Development of hydroacoustic methods for fish detection in shallow water. PhD thesis, University of Oslo

  • Balk H, Lindem T (2000) Improving single fish detection in data from split-beam sonar. Aquat Living Resour 13:297–303. doi:10.1016/S0990-7440(00)01079-2

    Article  Google Scholar 

  • Balk H, Lindem T (2006) Sonar4, Sonar5 and Sonar6 post processing systems, operator manual version (5.9.6) 411 pp

  • Brandt SB, Mason DM, Patrick EV, Argyle L, Wells L, Unger PA et al (1991) Acoustic measures of the abundance and size of pelagic planktivores in Lake Michigan. Can J Fish Aquat Sci 48:894–908. doi:10.1139/f91-106

    Article  Google Scholar 

  • Burczynski JJ, Johnson RL (1986) Application of dual-beam acoustic survey techniques to limnetic populations of juvenile sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 58:51–62

    Google Scholar 

  • Cadic N (2002) Les erreurs de mesures attachées aux descripteurs piscicoles en plans d’eau issus des échantillonnages par filets maillants et par échosondage. PhD thesis, Université Pierre et Marie Curie

  • Cardinale M, Casini M, Arrhenius F, Håkansson N (2003) Diel spatial distribution and feeding activity of herring (Clupea harengus) and sprat (Sprattus sprattus) in the Baltic Sea. Aquat Living Resour 16:283–292. doi:10.1016/S0990-7440(03)00007-X

    Article  Google Scholar 

  • Cyterski M, Ney J, Duval M (2003) Estimation of surplus biomass of clupeids in Smith Mountain Lake, Virginia. Trans Am Fish Soc 132:361–370. doi:10.1577/1548-8659(2003)132<0361:EOSBOC>2.0.CO;2

    Article  Google Scholar 

  • Dekar MP, Magoulick DD (2007) Factors affecting fish assemblage structure during seasonal stream drying. Ecol Freshwat Fish 16:335–342. doi:10.1111/j.1600-0633.2006.00226.x

    Article  Google Scholar 

  • Djemali I (2005) Evaluation de la biomasse piscicole dans les plans d’eau douce tunisiens: Approches analytique et acoustique. PhD thesis, Institut National Agronomique de Tunisie

  • Djemali I, Kraiem MM, Cadic N, Proteau JP, El Abed A, Jarboui O (2003) Fish biomass assessment in freshwater using echo-prospection: Application to the Sidi Salem reservoir. Bull Inst Natl Sci Technol Mer Salammbo 30:23–32

    Google Scholar 

  • Drastik V, Kubecka J (2005) Fish avoidance of acoustic survey boat in shallow waters. Fish Res 72:219–228. doi:10.1016/j.fishres.2004.10.017

    Article  Google Scholar 

  • Foote KG, Knutsen H, Vestnes G, MacLennan DN, Simmonds EJ (1987) Calibration of acoustic instruments for fish density estimation. ICES Coop Res Rep 144:1–69

    Google Scholar 

  • Fréon P, Misund AO (1999) Dynamics of pelagic fish distribution and behaviour: effects on fisheries and stock assessment. Fishing News Books, Oxford

    Google Scholar 

  • Fréon P, Soria M, Mullon M, Gerlotto F (1993) Diurnal variation in fish density estimates during acoustic survey in relation to spatial distribution and avoidance reaction. Aquat Living Resour 6:221–234. doi:10.1051/alr:1993023

    Article  Google Scholar 

  • Frouzova J, Kubecka J, Balk H, Frouz F (2005) Target strength of some European fish species and its dependence on fish body parameters. Fish Res 75:86–96. doi:10.1016/j.fishres.2005.04.011

    Article  Google Scholar 

  • Gangl RS, Whaley RA (2004) Comparison of fish density estimates from repeated hydroacoustic surveys on two wyoming waters. N Am J Fish Manage 24:1279–1287. doi:10.1577/M03-098.1

    Article  Google Scholar 

  • Gauthier S, Rose GA (2001) Target strength of encaged Atlantic redfish (Sebastes spp.). ICES J Mar Sci 58:562–568. doi:10.1006/jmsc.2001.1066

    Article  Google Scholar 

  • Guillard J, Albaret JJ, Simier M, Sow I, Raffray J, de Tito Morais L (2004) Spatio-temporal variability of fish assemblages in the Gambia Estuary (West Africa) observed by two vertical hydroacoustic methods: moored and mobile sampling. Aquat Living Resour 17:47–55. doi:10.1051/alr:2004005

    Article  Google Scholar 

  • Guillard J, Perga ME, Colon M, Angeli N (2006) Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish Manag Ecol 13:319–327. doi:10.1111/j.1365-2400.2006.00508.x

    Article  Google Scholar 

  • Horne JK, Clay CS (1998) Sonar systems and aquatic organisms: matching equipment and model parameters. Can J Fish Aquat Sci 55:1296–1306. doi:10.1139/cjfas-55-5-1296

    Article  Google Scholar 

  • Hughes S (1998) A mobile horizontal hydroacoustic fisheries survey of the River Thames, United Kingdom. Fish Res 35:91–97. doi:10.1016/S0165-7836(98)00063-0

    Article  Google Scholar 

  • Johnston J (1981) Development and evaluation of hydroacoustic techniques for instantaneous fish population estimates in shallow lakes. Washington State Game Department, Fisheries Research Report 81–18, Olympia

  • Jolly G, Hampton I (1990) A stratified random transect design for acoustic surveys of fish stock. Can J Fish Aquat Sci 47:1281–1291

    Article  Google Scholar 

  • Jurvelius J, Auvinen H, Kolari I, Marjomäki TJ (2005) Density and biomass of smelt (Osmerus eperlanus) in five Finnish lakes. Fish Res 3:353–361. doi:10.1016/j.fishres.2005.01.016

    Article  Google Scholar 

  • Jurvelius J, Knudsen FR, Balk H, Marjomäki TJ, Peltonen H, Taskinen J, Tuomaala A, Markku V (2007) Echosounding can discriminate between fish and macroinvertebrates in freshwater. Freshw Biol 53:912–923. doi:10.1111/j.1365-2427.2007.01944.x

    Article  Google Scholar 

  • Knudsen FR, Sægrov H (2002) Benefits from horizontal beaming during acoustic survey: application to three Norwegian lakes. Fish Res 56:205–211. doi:10.1016/S0165-7836(01)00318-6

    Article  Google Scholar 

  • Kraiem MM (1989) Etude comparée de la croissance de différentes populations de Barbus callensis Valenciennes 1842, (Pisces, Cyprinidae), de Tunisie (A comparative study of the growth of different populations of Barbus callensis from Tunisia). Cybium 13:365–374

    Google Scholar 

  • Kraiem MM, Ben Hamza C, Ramdani M, Fathi AA, Abdelzaher HMA, Flower RJ (2001) Some observations on the age and growth of thin-lipped grey mullet, Liza ramada Risso, 1826 (Pisces, Mugilidae) in three North African wetland lakes: Merja Zerga (Morocco), Garâat Ichkeul (Tunisia) and Edku Lake (Eqypt). Aquat Ecol 35:335–345. doi:10.1023/A:1011900631096

    Article  Google Scholar 

  • Kubecka J, Duncan A (1998) Acoustic size versus real size for common species of riverine fish in different aspect. Fish Res 35:115–125. doi:10.1016/S0165-7836(98)00066-6

    Article  Google Scholar 

  • Kubecka J, Wittingerova M (1998) Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater lakes. Fish Res 35:99–106. doi:10.1016/S0165-7836(98)00064-2

    Article  Google Scholar 

  • Lilja J, Marjomäki TJ, Jurvelius J, Rossi T, Heikkola E (2004) Simulation and experimental measurement of side-aspect target strength of Atlantic salmon (Salmo salar) at high frequency. Can J Fish Aquat Sci 61:2227–2236. doi:10.1139/f04-166

    Article  Google Scholar 

  • Linlokken A (1995) Monitoring pelagic whitefish (Coregonus lavaretus) and vendace (Coregonus albula) in a hydroelectric reservoir using hydroacoustics. Regul River 10:315–328. doi:10.1002/rrr.3450100224

    Article  Google Scholar 

  • Love RH (1977) Target strength of an individual fish at any aspect. J Acoust Soc Am 72:1397–1402. doi:10.1121/1.381672

    Article  Google Scholar 

  • Lyons J (1998) A hydroacoustic assessment of fish stock in the River Trent, England. Fish Res 35:83–90. doi:10.1016/S0165-7836(98)00062-9

    Article  Google Scholar 

  • McFarland W, Okubo A (1997) Animal groups in three dimensions, chapter metabolic models of fish behavior, the need for quantitative observations. Cambridge University Press, Cambridge

    Google Scholar 

  • Mouse PJ, Kemper J (1996) Applications of a hydroacoustic sampling technique in a large wind-exposed shallow lake. In: CowxI G (ed) Stock assessment in inland fisheries. Fishing News Books. Blackwell Science, Oxford, pp 179–195

    Google Scholar 

  • Nyberg P, Bergstrand E, Degerman E, Enderlein O (2001) Recruitment of pelagic fish in an unstable climate: studies in Sweden’s four largest lakes. Ambio 8:559–564. doi:10.1639/0044-7447(2001)030[0559:ROPFIA]2.0.CO;2

    Google Scholar 

  • Power ME (1987) Predator avoidance by grazing stream fishes in temperate and tropical streams: importance of stream depth and prey size. In: Kerfoot WC, Heins DC (eds) Predation: direct and indirect impacts in aquatic communities. University Press of New England, Hanover, NH, pp 333–351

    Google Scholar 

  • Schael DM, Rice JA, Degan DJ (1995) Spatial and temporal distribution of threadfin shad in a Southeastern reservoir. Trans Am Fish Soc 124:804–812. doi:10.1577/1548-8659(1995)124<0804:SATDOT>2.3.CO;2

    Article  Google Scholar 

  • Schimdt MD, Gassner H, Meyer EI (2005) Distribution and biomass of an underfished vendace, Coregonus albula, population in a mesotrophic German reservoir. Fish Manag Ecol 12:169–175. doi:10.1111/j.1365-2400.2005.00439.x

    Article  Google Scholar 

  • Simmonds J, MacLennan DN (eds) (2005) Fisheries acoustics. Theory and practice, 2nd ed. Blackwell Publishing, Oxford 437 pp

  • Skaret G, Nottestad L, Fernö A, Johannessen A, Axelsen E (2003) Spawning of herring day or night, today or tomorrow? Aquat Living Resour 16:299–306. doi:10.1016/S0990-7440(03)00006-8

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. WH Freeman, San Francisco

    Google Scholar 

  • Stetter SLP, Rudstam LG, Thomson S, Parrish DL (2006) Hydroacoustic separation of rainbow smelt (Osmerus mordax) age groups in Lake Champlain. Fish Res 82:176–185. doi:10.1016/j.fishres.2006.06.014

    Article  Google Scholar 

  • Swierzowski A, Godlewska M, Póltorak T (2000) The relationship between the spatial distribution of fish, zooplankton and other environmental parameters in the Solina reservoir, Poland. Aquat Living Resour 13:373–377. doi:10.1016/S0990-7440(00)01085-8

    Article  Google Scholar 

  • Tarbox KE, Thorne RE (1996) Assessment of adult salmon in near-surface waters of Cook Inlet, Alaska. ICES J Mar Sci 53:397–401. doi:10.1006/jmsc.1996.0055

    Article  Google Scholar 

  • Taylor JC, Thompson JS, Rand PS, Fuentes M (2005) Sampling and statistical considerations for hydroacoustic survey used in estimating abundance of forage fish in reservoirs. N Am J Fish Manage 23:75–83

    Google Scholar 

  • Toujani R (1998) Le sandre (Stizostedion lucioperca L.) de la retenue de Sidi-Salem (Tunisie): Biologie et dynamique de population. PhD thesis, Université Claude Bernard Lyon I (France)

  • Vondracek B, Degan DJ (1995) Among and within-transect variability in estimates of shad abundance made with hydroacoustics. N Am J Fish Manage 15:933–939. doi:10.1577/1548-8675(1995)015<0933:AAWVIE>2.3.CO;2

    Article  Google Scholar 

  • Winfield IJ, Fletcher JM, James JB (2007) Seasonal variability in the abundance of Arctic charr (Salvelinus alpinus (L.)) recorded using hydroacoustics in Windermere, UK and its implications for survey design. Ecol Freshwat Fish 16:64–69. doi:10.1111/j.1600-0633.2006.00170.x

    Article  Google Scholar 

  • Yule DL (2000) Comparison of horizontal acoustic and purse-seine estimates of salmonid densities and sizes in eleven wyoming waters. N Am J Fish Manage 20:759–775. doi:10.1577/1548-8675(2000)020<0759:COHAAP>2.3.CO;2

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

The study was financed by the Tunisian Ministry for Higher Education and Scientific Research, and was carried out as part of the research project “GRAVID”. We would like to thank Dr. F.R. Knudsen from Simrad Horten in Norway for his kindness and advice, and also Dr. H. Balk from the University of Oslo for his kind assistance. We would like also to thank Dr. L. Cardona from the University of Barcelona for providing information about the behaviour of mullet. We express our gratitude to the people in charge of regional fishing in the districts of Béja, Nabeul, Siliana and Bizerte for their assistance. Special thanks to the two anonymous referees for improving the manuscript and to Daniel Yule for his great help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Djemali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djemali, I., Toujani, R. & Guillard, J. Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect. Aquat Ecol 43, 1121–1131 (2009). https://doi.org/10.1007/s10452-008-9215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9215-6

Keywords

Navigation