, Volume 10, Issue 4, pp 299-307

An Analysis of the Interactions of BSA with an Anion-Exchange Surface Under Linear and Non-Linear Conditions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The interactions of BSA with an anion-exchange adsorbent have been studied to aid in the understanding of protein adsorption in ion-exchange chromatography. Linear chromatography, flow microcalorimetry and isotherm measurements were used to analyze adsorption energetics in the linear and overloaded regions of the equilibrium isotherm. The effects of salt type, salt and protein concentration, and temperature are reported. It was observed that under all conditions studied the adsorption process was entropically driven. This was contrary to expectations, since at the pH selected ion exchange is expected to dominate. A major driving force for the adsorption of BSA on the anion exchanger was concluded to be the increase in entropy from the release of water due to interactions between hydrophobic regions on the protein and adsorbent. The data further suggest that the conformational entropy change accompanying protein adsorption on the ion exchanger may also be significant.