Skip to main content
Log in

Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given optimal interpolation points σ 1,…,σ r , the \(\mathcal {H}_{2}\)-optimal reduced order model of order r can be obtained for a linear time-invariant system of order nr by simple projection (whereas it is not a trivial task to find those interpolation points). Our approach to linear time-invariant systems depending on parameters \(p\in \mathbb {R}^{d}\) is to approximate their parametric dependence as a so-called metamodel, which in turn allows us to set up the corresponding parametrized reduced order models. The construction of the metamodel we suggest involves the coefficients of the characteristic polynomial and radial basis function interpolation, and thus allows for an accurate and efficient approximation of σ 1(p),…,σ r (p). As the computation of the projection still includes large system solves, this metamodel is not sufficient to construct a fast and truly parametric reduced system. Setting up a medium-size model without extra cost, we present a possible answer to this. We illustrate the proposed method with several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  2. Antoulas, A., Ionita, A, Lefteriu, S: On two-variable rational interpolation. Linear Algebra Appl. 436(8), 2889–2915 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math .Soc. 68(3), 337–404 (1950). doi:10.1090/S0002-9947-1950-0051437-7

    Article  MATH  MathSciNet  Google Scholar 

  4. Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011a)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baur, U., Benner, P., Greiner, A., Korvink, J., Lienemann, J., Moosmann, C.: Parameter preserving model order reduction for mems applications. Math. Comp. Model. Dyn. 17(4), 297–317 (2011b). doi:10.1080/13873954.2011.547658

    Article  MATH  MathSciNet  Google Scholar 

  6. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Lin. Alg. Appl. 15(9), 755–777 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benner, P., Gugercin, S., Willcox, K.: A survey of model reduction methods for parametric systems. Max Planck Institute Magdeburg Preprint MPIMD/13-14, available from http://www.mpi-magdeburg.mpg.de/preprints/ (2013)

  8. Benner, P., Grundel, S., Hornung, N.: Parametric Model Order Reduction with Small \(\mathcal {H}_{2}\)-Error Using Radial Basis Functions. Max Planck Institute Magdeburg Preprint MPIMD/14-01, available from http://www.mpi-magdeburg.mpg.de/preprints/ (2014)

  9. Boyd, J.P.: Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals. J. Sci. Comput. 2(2), 99–109 (1987). doi10.1007/BF01061480

    Article  MATH  MathSciNet  Google Scholar 

  10. Bunse-Gerstner, A., Kubalińska, D., Vossen, G., Wilczek, D.: h 2-norm optimal model reduction for large scale discrete dynamical MIMO systems. J. Comput. Appl. Math. 233(5), 1202–1216 (2010). doi10.1016/j.cam.2008.12.029

    Article  MATH  MathSciNet  Google Scholar 

  11. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB (with CD-ROM). World Scientific (2007)

  12. Grimme, E.J.: Krylov projection methods for model reduction Dissertation. University of Illinois at Urbana-Champaign, USA (1997)

    Google Scholar 

  13. Gugercin, S., Antoulas, A.C., Beattie, C.: \(\mathcal {H}_{2}\) Model Reduction for Large-Scale Linear Dynamical Systems. SIAM. J. Matrix Anal. Appl. 30(2), 609–638 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Meier, I.L., Luenberger, D.: Approximation of linear constant systems. IEEE Trans. Automat. Control 12(5), 585–588 (1967). doi:10.1109/TAC.1967.1098680

    Article  Google Scholar 

  15. Moosmann, C., Rudnyi, E., Greiner, A., Korvink, J., Hornung, M: Parameter preserving model order reduction of a flow meter. Tech. Proc. Nanotech 2005 (2005)

  16. Panzer, H., Hubele, J., Eid, R, Lohmann, B.: Generating a parametric finite element model of a 3D cantilever Timoshenko beam using MATLAB. Technical reports on automatic control, available from https://mediatum.ub.tum.de (2009)

  17. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungstechnik 58(8), 475–484 (2010)

    Article  Google Scholar 

  18. Rieger, C, Schaback, R, Zwicknagl, B: Sampling and stability. In: Dæhlen, M., Floater, M., Lyche, T, Merrien, J.L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, Lect. Notes Comput. Sc., vol. 5862, pp. 347–369 . Springer, Berlin Heidelberg (2010), doi:10.1007/978-3-642-11620-9_23

  19. Schaback, R.: Native Hilbert spaces for radial basis functions I. In: Müller, M.W., Buhmann, M.D., Mache, D.H., Felten, M. (eds.) New Developments in Approximation Theory, ISNM Internat. Ser. Numer. Math., vol 132, Birkhäuser Basel, pp 255–282 (1999), doi:10.1007/978-3-0348-8696-3_16

  20. Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math. 6(3), 409–434 (1976). doi:10.1216/RMJ-1976-6-3-409

  21. Van Dooren, P., Gallivan, K.A., Absil, P.-A.: \(\mathcal {H}_{2}\)-optimal model reduction of MIMO systems. Appl. Math. Lett. 21(12), 1267–1273 (2008). doi:10.1016/j.aml.2007.09.015

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Grundel.

Additional information

Communicated by: K. Urban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benner, P., Grundel, S. & Hornung, N. Parametric model order reduction with a small \(\mathcal {H}_{2}\)-error using radial basis functions. Adv Comput Math 41, 1231–1253 (2015). https://doi.org/10.1007/s10444-015-9410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9410-7

Keywords

Mathematics Subject Classifications (2010)

Navigation